2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

11 - 20 of 25 results for: EIPER::ms_cleantech

CHEMENG 274: Environmental Microbiology I (CEE 274A, CHEMENG 174)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33, 35, and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3

CHEMENG 355: Advanced Biochemical Engineering (BIOE 355)

Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism; recombinant DNA technology and synthetic biology (metabolic engineering). The production of protein pharaceuticals as a paradigm for the application of chemical engineering principles to advanced process development within the framework of current business and regulatory requirements. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41, or equivalent.
Terms: Spr | Units: 3

CHEMENG 456: Microbial Bioenergy Systems (CEE 274B)

Introduction to microbial metabolic pathways and to the pathway logic with a special focus on microbial bioenergy systems. The first part of the course emphasizes the metabolic and biochemical principles of pathways, whereas the second part is more specifically directed toward using this knowledge to understand existing systems and to design innovative microbial bioenergy systems for biofuel, biorefinery, and environmental applications. There also is an emphasis on the implications of rerouting of energy and reducing equivalents for the fitness and ecology of the organism. Prerequisites: CHEMENG 174 or 181 and organic chemistry, or equivalents.
Terms: Win | Units: 3
Instructors: Spormann, A. (PI)

ECON 155: Environmental Economics and Policy

Economic sources of environmental problems and alternative policies for dealing with them (technology standards, emissions taxes, and marketable pollution permits). Evaluation of policies addressing local air pollution, global climate change, and the use of renewable resources. Connections between population growth, economic output, environmental quality, sustainable development, and human welfare. Prerequisite: ECON 50. May be taken concurrently with consent of the instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SI

EE 293A: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution (ENERGY 293A, MATSCI 156)

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win, Sum | Units: 3-4

ENERGY 253: Carbon Capture and Sequestration (ENERGY 153)

CO2 separation from syngas and flue gas for gasification and combustion processes. Transportation of CO2 in pipelines and sequestration in deep underground geological formations. Pipeline specifications, monitoring, safety engineering, and costs for long distance transport of CO2. Comparison of options for geological sequestration in oil and gas reservoirs, deep unmineable coal beds, and saline aquifers. Life cycle analysis.
Terms: Aut | Units: 3-4

ENERGY 267: Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties (ENERGY 167)

Appraisal of development and remedial work on oil and gas wells; appraisal of producing properties; estimation of productive capacity, reserves; operating costs, depletion, and depreciation; value of future profits, taxation, fair market value; original or guided research problems on economic topics with report. Prerequisite: consent of instructor.
Terms: Win | Units: 3

ENERGY 269: Geothermal Reservoir Engineering

Conceptual models of heat and mass flows within geothermal reservoirs. The fundamentals of fluid/heat flow in porous media; convective/conductive regimes, dispersion of solutes, reactions in porous media, stability of fluid interfaces, liquid and vapor flows. Interpretation of geochemical, geological, and well data to determine reservoir properties/characteristics. Geothermal plants and the integrated geothermal system.
Last offered: Spring 2017

ENERGY 293A: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution (EE 293A, MATSCI 156)

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win, Sum | Units: 3-4

ENERGY 293C: Energy from Wind and Water Currents

This course focuses on the extraction of energy from wind, waves and tides.nThe emphasis in the course is technical leading to a solid understanding ofnestablished extraction systems and discussion of promising new technologies.nWe will also cover resource planning and production optimization through observations and computer simulations.nThe course includes at least one weekend field trip, and may include experimentsnin wind tunnel and/or flume.nnPrerequisites: CEE176B or EE293B, programming experience, understanding of fluid mechanics, electrical systems, and engineering optimization.
Last offered: Spring 2017
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints