2020-2021 2021-2022 2022-2023 2023-2024 2024-2025
Browse
by subject...
    Schedule
view...
 

1 - 10 of 25 results for: BIOE ; Currently searching autumn courses. You can expand your search to include all quarters

BIOE 44: Fundamentals for Engineering Biology Lab

An introduction to techniques in genetic, molecular, biochemical, cellular and tissue engineering. Lectures cover advances in the field of synthetic biology with emphasis on genetic engineering, plasmid design, gene synthesis, genetic circuits, and safety and bioethics. Lab modules will teach students how to conduct basic lab techniques, add/remove DNA from living matter, and engineer prokaryotic and eukaryotic cells. Team projects will support practice in component engineering with a focus on molecular design and quantitative analysis of experiments, device and system engineering using abstracted genetically encoded objects, and product development. Prerequisite: concurrent or previous enrollment in BIO 82 or BIO 83 or BIOE 80. Preference to declared BioE students. Students should email Alex Engel to fill out an enrollment form for a permission code. Class meets in Shriram 112, lab meets in Shriram 114. Scientific Method and Analysis (SMA).
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 101: Systems Biology (BIOE 210)

Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: CME 102; BIO 83, BIO 84; or consent of instructor.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

BIOE 141A: Senior Capstone Design I

Lecture/Lab. First course of two-quarter capstone sequence. Team based project introduces students to the process of designing new bioengineering technologies to address unmet societal needs. Methods and processes include need specification, brainstorming, concept selection, system specification, and system engineering/design via iterative prototyping and experimentation. First quarter focuses on the innovation process and skills building, and teams go from specifying the need to initial prototypes and project plans. Second quarter focuses on implementation and demonstration of technical feasibility. Lectures and labs include interactive project work and guest experts. Prerequisites: BIOE 123 and BIOE 44. This course is open only to seniors in the undergraduate Bioengineering program (or by instructor consent).
Terms: Aut | Units: 4

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr | Units: 1-5 | Repeatable for credit

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 210: Systems Biology (BIOE 101)

Terms: Aut | Units: 3

BIOE 214: Representations and Algorithms for Computational Molecular Biology (BIOMEDIN 214, CS 274, GENE 214)

Topics: This is a graduate level introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, chemoinformatics, pharmacogenetics, network biology. Note: For Fall 2021, Dr. Altman will be away on sabbatical and so class will be taught from lecture videos recorded in fall of 2018. The class will be entirely online, with no scheduled meeting times. Lectures will be released in batches to encourage pacing. A team of TAs will manage all class logistics and grading. Firm prerequisite: CS 106B.
Terms: Aut | Units: 3-4

BIOE 222: Physics and Engineering Principles of Multi-modality Molecular Imaging of Living Subjects (BMP 222, RAD 222)

Physics and Engineering Principles of Multi-modality Molecular Imaging of Living Subjects ( RAD 222A). Focuses on instruments, algorithms and other technologies for non-invasive imaging of molecular processes in living subjects. Introduces research and clinical molecular imaging modalities, including PET, SPECT, MRI, Ultrasound, Optics, and Photoacoustics. For each modality, lectures cover the basics of the origin and properties of imaging signal generation, instrumentation physics and engineering of signal detection, signal processing, image reconstruction, image data quantification, applications of machine learning, and applications of molecular imaging in medicine and biology research.
Terms: Aut | Units: 3-4
Instructors: Levin, C. (PI)

BIOE 240: Principles of Synthetic Biology

Principles of Synthetic Biology. At its core, synthetic biology is inspired by the power and diversity of the living world. It is an endeavor predicated on the idea that we can learn to more reliably and rapidly build with biology for compelling applications in medicine, biotechnology, and green chemistry. What is unique to synthetic biology is the application of an engineering-driven approach to accelerate the design-build-test loops required for reprogramming existing, and constructing new, biological systems. In this course, the field of synthetic biology and its natural scientific and engineering basis are introduced.
Terms: Aut | Units: 3 | Repeatable 1 times (up to 4 units total)

BIOE 241: Biological Macromolecules (BIOC 241, BIOPHYS 241, SBIO 241)

The physical and chemical basis of macromolecular function. Topics include: forces that stabilize macromolecular structure and their complexes; thermodynamics and statistical mechanics of macromolecular folding, binding, and allostery; diffusional processes; kinetics of enzymatic processes; the relationship of these principles to practical application in experimental design and interpretation. The class emphasizes interactive learning, and is divided among lectures, in-class group problem solving, and discussion of current and classical literature. Enrollment limited to 30. Prerequisites: Background in biochemistry and physical chemistry recommended but material available for those with deficiency in these areas; undergraduates with consent of instructor only.
Terms: Aut | Units: 3-5
Instructors: Das, R. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints