2020-2021 2021-2022 2022-2023 2023-2024 2024-2025
Browse
by subject...
    Schedule
view...
 

1 - 10 of 113 results for: CEE ; Currently searching winter courses. You can expand your search to include all quarters

CEE 31B: Making and Modeling Fundamentals

The course hones student ability to express architectural form and ideas through a variety of mediums, techniques, languages and communication styles. Students will explore drawing and 3D techniques to show process and idea development as well as communication of those ideas to others. Emphasis will be placed on analog techniques of representation and modeling, material investigations, visual and verbal presentation skills, graphic design, and the significance of "the hand" in creation. As part of the course, students will have the opportunity to tour local workshops and engage with architectural craftspeople to build and expand skill sets. Historic and current precedents will be studied through model making, drawing, and a variety of presentation methods. Open to all level of students, but designed for Sustainable Architecture + Engineering majors who have taken CEE 133A or CEE 33Q, the class will demonstrate how technique and craft can communicate concept, why iteration and intention are concomitant, and where the foundation of a personal design language begins.
Terms: Win | Units: 4
Instructors: Noblin, T. (PI)

CEE 32G: Architecture Since 1900 (ARTHIST 142)

Art 142 is an introduction to the history of architecture since 1900 and how it has shaped and been shaped by its cultural contexts. The class also investigates the essential relationship between built form and theory during this period.
Terms: Win | Units: 4 | UG Reqs: GER:DB-Hum, WAY-A-II
Instructors: Beischer, T. (PI)

CEE 33H: Critical Analysis of Architecture

The course introduces fundamental techniques in analytic drawing, as well as the ways in which persistent disciplinary problems and idiosyncratic pragmatic contingencies interact to produce architectural form.
Terms: Win | Units: 3

CEE 41Q: Clean Water Now! Urban Water Conflicts

Why do some people have access to as much safe, clean water as they need, while others do not? You will explore answers to this question by learning about, discussing and debating urban water conflicts including the Flint water crisis, the drought in South Africa, intermittent water supply in Mumbai, and arsenic contamination in Bangladesh. In this course, you will explore the technical, economic, institutional, social, policy, and legal aspects of urban water using these and more water conflicts as case studies. You will attend lectures, and participate in discussions, laboratory modules, and field work. In lectures, you will learn about the link between water and human and ecosystem health, drinking water and wastewater treatment methods, as well as policies and guidelines (local, national, and global from the World Health Organization) on water and wastewater, and the role of various stakeholders including institutions and the public, in the outcome of water conflicts. You will dive more »
Why do some people have access to as much safe, clean water as they need, while others do not? You will explore answers to this question by learning about, discussing and debating urban water conflicts including the Flint water crisis, the drought in South Africa, intermittent water supply in Mumbai, and arsenic contamination in Bangladesh. In this course, you will explore the technical, economic, institutional, social, policy, and legal aspects of urban water using these and more water conflicts as case studies. You will attend lectures, and participate in discussions, laboratory modules, and field work. In lectures, you will learn about the link between water and human and ecosystem health, drinking water and wastewater treatment methods, as well as policies and guidelines (local, national, and global from the World Health Organization) on water and wastewater, and the role of various stakeholders including institutions and the public, in the outcome of water conflicts. You will dive into details of conflicts over water through case studies using discussion and debate. You will have the opportunity to measure water contaminants in a laboratory module. You will sample a local stream and measure concentrations of Escherichia coli and enterococci bacteria in the water. A field trip to a local wastewater treatment plant will allow you to see how a plant operates. By the end of this course, you will have a greater appreciation of the importance of institutions, stakeholders and human behavior in the outcome of water conflicts, and the complexity of the coupled human-ecosystem-urban water system.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SI
Instructors: Boehm, A. (PI)

CEE 63: Weather and Storms (CEE 263C)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Ni¿o, la Ni¿a, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Jacobson, M. (PI)

CEE 70: Environmental Science and Technology (ENGR 90)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Kopperud, R. (PI)

CEE 101A: Mechanics of Materials

Introduction to beam and column theory. Normal stress and strain in beams under various loading conditions; shear stress and shear flow; deflections of determinate and indeterminate beams; analysis of column buckling; structural loads in design; strength and serviceability criteria. Lab experiments. Prerequisites: ENGR 14.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Linder, C. (PI)

CEE 102A: Legal / Ethical Principles in Design, Construction, Project Delivery

Introduction to the key legal principles affecting design, construction and the delivery of infrastructure projects. The course begins with an introduction to the structure of law, including principles of contract, negligence, professional responsibility, intellectual property, land use and environmental law, then draws on these concepts to examine current and developing means of project delivery. Limited class size. Enrollment preference given to undergraduates majoring in CE and EnvSE. Undergraduates wishing to have CEE 102A count as their Technology in Society (TiS) class must take it for a letter grade.
Terms: Win | Units: 3

CEE 107R: E^3: Extreme Energy Efficiency (CEE 207R)

Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns more »
Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will work closely and interactively with the instructors Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI), Dr. Joel Swisher, former RMI managing director and Stanford instructor in CEE, more recently director of the Institute for Energy Studies at Western Washington University, and Dr. Holmes Hummel, founder of Clean Energy Works. All backgrounds and disciplines, undergraduate and graduate, are welcome to enroll. There is no application this year. Solid technical grounding and acquaintance with basic economics and business concepts will be helpful. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/ Earthsys 103, CEE 107S/ CEE 207S, CEE 176A, CEE 176B. Course details are available at the website: https://energy.stanford.edu/extreme-energy-efficiency
Terms: Win, Spr | Units: 3-5

CEE 108B: Explore Energy Seminar: Launch (CEE 208B, ENERGY 108B, ENERGY 208B)

The Explore Energy Seminar series is a weekly residential education experience hosted by the Explore Energy House engaging current topics that affect the pace of energy transitions at multiple scales. The course features on-ramps to pursue wide ranging interests in energy solutions, climate action, environmental justice, international development, and entrepreneurship. Join in any week to explore opportunities to participate in research, Stanford's Living Laboratory, entrepreneurship and energy start-ups, and planning for giga-scale deployment. Consistent with Stanford's interest in fostering community and inclusion, this course will facilitate new connections through cross-house dialogues among residents in Stanford's theme houses with intersecting interests. Stanford alumni with a range of disciplinary backgrounds will be among the presenters each quarter, supporting exploration of both educational and career development paths. This class sequence repeats annually.
Terms: Win | Units: 1-2
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints