2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: artificial intelligence

ANTHRO 128A: The Boundaries of Humanity: Humans, Animals and Machines in the Age of Biotechnology

Advances in research and technology are blurring the boundaries between humans, animals, and machines, challenging conventional notions of human nature. Seminar explores the question of what it now means to be human and the personal, social, and ethical implications of our advancing technologies through the lens of various disciplines, including anthropology, cognitive psychology, neuroscience, genetics, evolutionary biology, biotechnology, and artificial intelligence. Includes guest speakers from fields and industries where important questions are being raised.
Terms: Spr | Units: 3-4

CS 22A: The Social & Economic Impact of Artificial Intelligence

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of CS22 is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Spr | Units: 1
Instructors: Kaplan, J. (PI)

CS 54N: Great Ideas in Computer Science

Stanford Introductory Seminar. Preference to freshmen. Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. No prior experience with programming is assumed. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; and the philosophy behind artificial intelligence.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Roberts, E. (PI)

CS 94SI: What is AI? An Interdisciplinary Survey

Artificial intelligence has entered nearly every facet of our society. This course intends to give students, particularly non-CS majors, a fundamental understanding of AI and its implications for art, ethics, philosophy, and human consciousness. By drawing upon a variety of sources, holding hands-on workshops, and incorporating field trips, we hope to explore the interdisciplinary issues raised by AI progress that society must wrestle with in the near future. Enrollment is limited to 20 students. The application is available at http://bit.ly/explore-ai and due at 11.59pm on the first day of classes 03/30/2016.
Terms: Spr | Units: 1
Instructors: Liang, P. (PI)

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut | Units: 3-4

CS 227B: General Game Playing

A general game playing system accepts a formal description of a game to play it without human intervention or algorithms designed for specific games. Hands-on introduction to these systems and artificial intelligence techniques such as knowledge representation, reasoning, learning, and rational behavior. Students create GGP systems to compete with each other and in external competitions. Prerequisite: programming experience. Recommended: 103 or equivalent.
Terms: Spr | Units: 3

CS 294A: Research Project in Artificial Intelligence

Student teams under faculty supervision work on research and implementation of a large project in AI. State-of-the-art methods related to the problem domain. Prerequisites: AI course from 220 series, and consent of instructor.
Last offered: Winter 2012 | Repeatable for credit

CS 329: Topics in Artificial Intelligence

Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. May be repeated for credit.
| Repeatable for credit

CS 379C: Computational Models of the Neocortex

Reprisal of course offered spring 2012 of the same name ; see http://www.stanford.edu/class/cs379c/ for more detail ; which emphasized scaling the technologies of systems neuroscience to take advantage of the exponential trend in computational power known as Moore's Law. Course covers many of the same topics but will focus on the near-term prospects for practical advances in health care, prosthetic augmentation, and artificial intelligence inspired by biological systems. Graded pass / no credit on the basis of class participation, a midterm white paper or business prospectus and a final technical report evaluating an appropriate technology selected in collaboration with the instructor. Focus will be on examining the assumptions underlying current claims for realizing the potential benefits of research in neuroscience and identifying real business opportunities, disruptive new technologies and advances in medicine that could substantially benefit patients within the next decade. Technology-minded critical thinkers seriously interested in placing their bets and picking careers in related areas of business, technology and science are welcome. Prerequisites: basic probability theory, algorithms, and statistics.
Terms: Spr | Units: 3
Instructors: Dean, T. (PI)

STATS 315B: Modern Applied Statistics: Data Mining

Two-part sequence. New techniques for predictive and descriptive learning using ideas that bridge gaps among statistics, computer science, and artificial intelligence. Emphasis is on statistical aspects of their application and integration with more standard statistical methodology. Predictive learning refers to estimating models from data with the goal of predicting future outcomes, in particular, regression and classification models. Descriptive learning is used to discover general patterns and relationships in data without a predictive goal, viewed from a statistical perspective as computer automated exploratory analysis of large complex data sets.
Terms: Spr | Units: 2-3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints