2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

121 - 130 of 132 results for: GES

GES 281: Principles of 40Ar/39Ar Thermochronometry

The 40Ar/39Ar method is based upon the K-Ar decay scheme and allows high precision geochronology and thermochronology to be performed with K-bearing minerals. Provides a detailed exploration of the method including all practical considerations and laboratory procedures for standardization and instrument calibration. A laboratory component allows practical experience in making measurements and interpreting results.

GES 283: Thermochronology and Crustal Evolution

Thermochronology analyzes the competition between radioactive in-growth and temperature-dependant loss of radiogenic isotopes within radioactive mineral hosts in terms of temperature-time history. Coupled with quantitative understanding of kinetic phenomena and crustal- or landscape-scale interpretational models, thermochronology provides an important source of data for the Earth Sciences, notably tectonics, geomorphology, and petrogenesis. Focus on recent developments in thermochronology, specifically analytical and interpretative innovations developed over the past decade. Integrates the latest thermochronology techniques with field work in a small-scale research project focused upon crustal evolution.

GES 284: Field Seminar on Eastern Sierran Volcanism

For graduate students in the earth sciences and archaeology. Four-day trip over Memorial Day weekend to study silicic and mafic volcanism in the eastern Sierra Nevada: basaltic lavas and cinder cones erupted along normal faults bounding Owens Valley, Long Valley caldera, postcaldera rhyolite lavas, hydrothermal alteration and hot springs, Holocene rhyolite lavas of the Inyo and Mono craters, subaqueous basaltic and silicic eruptions of Mono Basin, floating pumice blocks. If snow-level permits, silicic volcanism associated with the Bodie gold district. Recommended: 1 or equivalent.

GES 285: Igneous Petrogenesis of the Continents

Radiogenic isotopes, stable isotopes, and trace elements applied to igneous processes; interaction of magmas with mantle and crust; convergent-margin magmatism; magmatism in extensional terrains; origins of rhyolites; residence times of magmas and magma chamber processes; granites as imperfect mirrors of their source regions; trace element modeling of igneous processes; trace element discriminant diagrams in tectonic analysis; phase equilibria of partial melting of mantle and crust; geothermometry and geobarometry. Topics emphasize student interest. Prerequisite: 180 or equivalent.

GES 286: Secondary Ionization Mass Spectrometry

Secondary ionization mass spectrometry (SIMS) is a versatile method capable of performing elemental and isotopic analysis in the solid-state at the nanogram to picogram scale. SIMS offers the most favorable combination of high spatial resolution, sensitivity, and mass resolving power. This course explores the ion optics of the primary and secondary columns of SIMS instruments and explains instrumental mass fractionation and standardization methods for both positive and negative secondary ions. Ion imaging and depth profiling approaches are also covered. Practical experience using Stanford's SHRIMP-RG and NanoSIMS instruments is provided.

GES 311: Interpretation of Tectonically Active Landscapes

Focuses on interpreting various topographic attributes in terms of horizontal and vertical tectonic motions. Topics include identification, mapping, and dating of geomorphic markers, deducing tectonic motions from spatial changes in landscape steepness, understanding processes that give rise to different landscape elements, interrogating the role of climate and lithology in producing these landscape elements, and understanding relationships between tectonic motions, surface topography, and the spatial distribution of erosion. Consists of two one hour lectures per week and one laboratory section that help students gain proficiency in Quaternary mapping and interpretation of topographic metrics.

GES 312: Analysis of Landforms

Quantitative methods to analyze digital topography and to interpret rates of tectonic and geomorphic processes from topographic metrics. Topics include analysis of digital topography using local and neighborhood-based methods, spectral methods, and wavelet methods. Course consists of two one hour lectures per week and one laboratory section that will help students gain proficiency in calculating topographic metrics using ArcGIS and Matlab.

GES 313: Modeling of Landforms

Geomorphic-transport-rule-based, as well as mass- and momentum-conservation based models to understand the evolution of Earth¿s topography. Topics include formulation of land-sculpting processes as geomorphic transport rules, coupling this mass-conservation approach with mechanical models of crustal deformation, and analysis of landscape forms in terms of events for which mass and momentum of fluid and sediment can be conserved. Both analytical, as well as numerical (finite-volume) treatments of particular problems in tectonic geomorphology will be covered. The specific problems addressed as part of the course will be tailored to those currently investigated by class participants.

GES 325: The Evolution of Body Size (BIO 325)

Preference to graduate students and upper-division undergraduates in GES and Biology. The influence of organism size on evolutionary and ecological patterns and processes. Focus is on integration of theoretical principles, observations of living organisms, and data from the fossil record. What are the physiological and ecological correlates of body size? Is there an optimum size? Do organisms tend to evolve to larger size? Does productivity control the size distribution of consumers? Does size affect the likelihood of extinction or speciation? How does size scale from the genome to the phenotype? How is metabolic rate involved in evolution of body size? What is the influence of geographic area on maximum body size?

GES 328: Seminar in Paleobiology

For graduate students. Current research topics including paleobotany, vertebrate and invertebrate evolution, paleoecology, and major events in the history of life on Earth.
| Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints