2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: EE 292a

EE 292A: Electronic Design Automation (EDA) and Machine Learning Hardware

The class teaches cutting-edge optimization and analysis algorithms for the design of complex digital integrated circuits and their use in designing machine learning hardware. It provides working knowledge of the key technologies in Electronic Design Automation (EDA), focusing on synthesis, placement and routing algorithms that perform the major transformations between levels of abstraction and get a design ready to be fabricated. As an example, the design of a convolutional neural network (CNN) for basic image recognition illustrates the interaction between hardware and software for machine learning. It will be implemented on a state-of-the-art FPGA board. Prerequisite: EE 108.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints