2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

181 - 190 of 293 results for: %

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Last offered: Autumn 2018 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

GEOPHYS 104: The Water Course (EARTHSYS 104, EARTHSYS 204, GEOPHYS 204)

The Central Valley of California provides a third of the produce grown in the U.S., but recent droughts and increasing demand have raised concerns about both food and water security. The pathway that water takes from rainfall to the irrigation of fields or household taps (¿the water course¿) determines the quantity and quality of the available water. Working with various data sources (measurements made on the ground, in wells, and from satellites) allows us to model the water budget in the valley and explore the recent impacts on freshwater supplies.
Last offered: Spring 2020 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 110: Introduction to the Foundations of Contemporary Geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 120: Ice, Water, Fire (GEOPHYS 220)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Last offered: Winter 2020 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

GEOPHYS 130: Introductory Seismology

Introduction to seismology including: elasticity and the wave equation, P, S, and surface waves, dispersion, ray theory, reflection and transmission of seismic waves, seismic imaging, large-scale Earth structure, earthquake location, earthquake statistics and forecasting, magnitude scales, seismic source theory.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 150: Geodynamics: Our Dynamic Earth (GEOPHYS 250)

What processes determine the large-scale structure and motion of Earth? How does convection deep within Earth drive plate tectonics and the formation of ocean basins and mountain ranges? Drawing from fundamental principles of mechanics and thermodynamics, we develop mathematical theories for heat flow, mantle convection, and the bending and breaking of Earth's brittle crust. Scaling arguments and dimensional analysis provide intuition that is refined through analytical and numerical solution (in MATLAB) of the governing equations and validated through comparison with observations. Prerequisites: differential equations ( CME 104 or MATH 53); mechanics and thermodynamics ( PHYSICS 41 and 45); prior programming experience ( CME 192 or CS 106A) is recommended.
Last offered: Spring 2017 | UG Reqs: GER: DB-NatSci, WAY-SMA

GEOPHYS 183: Reflection Seismology Interpretation (GEOLSCI 223, GEOPHYS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. ( Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Last offered: Winter 2020 | UG Reqs: WAY-SMA

GEOPHYS 184: Journey to the Center of the Earth (GEOLSCI 107, GEOLSCI 207, GEOPHYS 274)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution.
Last offered: Winter 2019 | UG Reqs: WAY-SMA

GEOPHYS 190: Near-Surface Geophysics: Imaging Groundwater Systems (GEOPHYS 275)

Groundwater systems in important agricultural areas of the U.S. The effects of climate change on water availability and crop production. Introduction to methodologies for describing and modeling the integrated surface and groundwater system. The use of geophysical methods to support sustainable groundwater management: airborne method for regional-scale imaging, ground-based and borehole methods for site-specific assessment. Each week includes two hours of class time, some of which will involve computer modeling/analysis of data. Pre-requisite: CME 100 or Math 51, or co-registration in either.
Last offered: Spring 2020 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints