2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 27 results for: BIOE

BIOE 44: Fundamentals for Engineering Biology Lab

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.
Terms: Aut, Spr | Units: 4 | UG Reqs: WAY-SMA

BIOE 101: Systems Biology (BIOE 210)

Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: CME 102; BIO 82, BIO 84; or consent of instructor.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

BIOE 141A: Senior Capstone Design I

Lecture/Lab. First course of two-quarter capstone sequence. Team based project introduces students to the process of designing new biological technologies to address societal needs. Topics include methods for validating societal needs, brainstorming, concept selection, and the engineering design process. First quarter deliverable is a design for the top concept. Second quarter involves implementation and testing. Guest lectures and practical demonstrations are incorporated. Prerequisites: BIOE 123 and BIOE 44. This course is open only to seniors in the undergraduate Bioengineering program.
Terms: Aut | Units: 4

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 210: Systems Biology (BIOE 101)

Terms: Aut | Units: 3

BIOE 214: Representations and Algorithms for Computational Molecular Biology (BIOMEDIN 214, CS 274, GENE 214)

Topics: introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, machine learning (clustering and classification), and natural language text processing. Prerequisite: CS 106B; recommended: CS161; consent of instructor for 3 units.
Terms: Aut | Units: 3-4

BIOE 217: Translational Bioinformatics (BIOMEDIN 217, CS 275, GENE 217)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Aut | Units: 4

BIOE 222: Physics and Engineering Principles of Multi-modality Molecular Imaging of Living Subjects (RAD 222)

Physics and Engineering Principles of Multi-modality Molecular Imaging of Living Subjects ( RAD 222A)nFocuses on instruments, algorithms and other technologies for non-invasive imaging of molecular processes in living subjects. Introduces research and clinical molecular imaging modalities, including PET, SPECT, MRI, Ultrasound, Optics, and Photoacoustics. For each modality, lectures cover the basics of the origin and properties of imaging signal generation, instrumentation physics and engineering of signal detection, signal processing, image reconstruction, image data quantification, applications of machine learning, and applications of molecular imaging in medicine and biology research.
Terms: Aut | Units: 3-4

BIOE 225: Ultrasound Imaging and Therapeutic Applications (RAD 225)

Covers the basic concepts of ultrasound imaging including acoustic properties of biological tissues, transducer hardware, beam formation, and clinical imaging.  Also includes the therapeutic applications of ultrasound including thermal and mechanical effects, visualization of the temperature and radiation force with MRI, tissue assessment with MRI and ultrasound, and ultrasound-enhanced drug delivery. Course website: http://bioe225.stanford.edu
Terms: Aut | Units: 3
Instructors: Pauly, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints