2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

151 - 160 of 278 results for: all courses

ESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and ESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

ESS 152: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, WAY-AQR

ESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA

ESS 158: Geomicrobiology (EARTHSYS 158, EARTHSYS 258, ESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Last offered: Winter 2019 | UG Reqs: WAY-SMA

ESS 185: Adaptation

Adaptation is the process by which organisms or societies become better suited to their environments. In this class, we will explore three distinct but related notions of adaptation. Biological adaptations arise through natural selection, while cultural adaptations arise from a variety of processes, some of which closely resemble natural selection. A newer notion of adaptation has emerged in the context of climate change where adaptation takes on a highly instrumental, and often planned, quality as a response to the negative impacts of environmental change. We will discuss each of these ideas, using their commonalities and subtle differences to develop a broader understanding of the dynamic interplay between people and their environments. Topics covered will include, among others: evolution, natural selection, levels of selection, formal models of cultural evolution, replicator dynamics, resilience, rationality and its limits, complexity, adaptive management.
Last offered: Spring 2018 | UG Reqs: WAY-SMA

GEOLSCI 1: Introduction to Geology (EARTHSYS 11)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Spr | Units: 5 | UG Reqs: WAY-AQR, GER: DB-NatSci, WAY-SMA

GEOLSCI 4: Coevolution of Earth and Life (EARTHSYS 4)

Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? Are we living in a sixth mass extinction? In this course, we will develop and use the tools of geology, paleontology, geochemistry, and modeling that allow us to reconstruct Earth's 4.5 billion year history and to reconstruct the interactions between life and its host planet over the past 4 billion years. We will also ask what this long history can tell us about life's likely future on Earth. We will also use One half-day field trip.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GEOLSCI 40N: Diamonds

Preference to freshmen. Topics include the history of diamonds as gemstones, prospecting and mining, and their often tragic politics. How diamond samples provide clues for geologists to understand the Earth's deep interior and the origins of the solar system. Diamond's unique materials properties and efforts in synthesizing diamonds.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER: DB-NatSci

GEOLSCI 42: Landscapes and Tectonics of the San Francisco Bay Area (EARTH 42)

Active faulting and erosion in the Bay Area, and its effects upon landscapes. Earth science concepts and skills through investigation of the valley, mountain, and coastal areas around Stanford. Faulting associated with the San Andreas Fault, coastal processes along the San Mateo coast, uplift of the mountains by plate tectonic processes, and landsliding in urban and mountainous areas. Field excursions; student projects.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

GEOLSCI 90: Introduction to Geochemistry (EARTHSYS 90)

The chemistry of the solid earth and its atmosphere and oceans, emphasizing the processes that control the distribution of the elements in the earth over geological time and at present, and on the conceptual and analytical tools needed to explore these questions. The basics of geochemical thermodynamics and isotope geochemistry. The formation of the elements, crust, atmosphere and oceans, global geochemical cycles, and the interaction of geochemistry, biological evolution, and climate. Recommended: introductory chemistry.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints