2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 10 of 32 results for: GENE ; Currently searching autumn courses. You can expand your search to include all quarters

GENE 104Q: Law and the Biosciences

Preference to sophomores. Focus is on human genetics; also assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenics, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement. Student presentations on research paper conclusions.
Terms: Aut | Units: 3 | UG Reqs: WAY-ER, Writing 2
Instructors: Greely, H. (PI)

GENE 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

GENE 200: Genetics and Developmental Biology Training Camp (DBIO 200)

Open to first year Department of Genetics and Developmental Biology students, to others with consent of instructors. Introduction to basic manipulations, both experimental and conceptual, in genetics and developmental biology.
Terms: Aut | Units: 1

GENE 202: Human Genetics

Utilizes lectures and small group activities to develop a working knowlege of human genetics as applicable to clinical medicine. Basic principles of inheritance, risk assessment, and population genetics are illustrated using examples drawn from diverse areas of medical genetics practice including prenatal, pediatric, adult and cancer genetics. Practical aspects of molecular and cytogenetic diagnostic methods are emphasized. Existing and emerging treatment strategies for single gene disorders are also covered. Prerequisites: basic genetics. Only available to MD and MOM students.
Terms: Aut | Units: 4

GENE 208: Gut Microbiota in Health and Disease (BIOE 221G, MI 221)

Preference to graduate students. Focus is on the human gut microbiota. Students will receive instruction on computational approaches to analyze microbiome data and must complete a related project.
Terms: Aut | Units: 3
Instructors: Bhatt, A. (PI)

GENE 214: Representations and Algorithms for Computational Molecular Biology (BIOE 214, BIOMEDIN 214, CS 274)

Topics: This is a graduate level introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, chemoinformatics, pharmacogenetics, network biology. Note: For Fall 2021, Dr. Altman will be away on sabbatical and so class will be taught from lecture videos recorded in fall of 2018. The class will be entirely online, with no scheduled meeting times. Lectures will be released in batches to encourage pacing. A team of TAs will manage all class logistics and grading. Firm prerequisite: CS 106B.
Terms: Aut | Units: 3-4
Instructors: Altman, R. (PI)

GENE 215: Frontiers in Biological Research (BIOC 215, DBIO 215)

Students analyze cutting edge science, develop a logical framework for evaluating evidence and models, and enhance their ability to design original research through exposure to experimental tools and strategies. The class runs in parallel with the Frontiers in Biological Research seminar series. Students and faculty meet on the Tuesday preceding each seminar to discuss a landmark paper in the speaker's field of research. Following the Wednesday seminar, students meet briefly with the speaker for a free-range discussion which can include insights into the speakers' paths into science and how they pick scientific problems.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)

GENE 219: Current Issues in Genetics

Current Issues in Genetics is an in-house seminar series that meets each Academic Quarter tor one hour per week (Friday, 4:00-5:00) and features talks by Genetics Department faculty, students, and postdoctoral fellows (with occasional visiting speakers from other Stanford departments). Thus, over the Academic Year, it provides a comprehensive overview of the work going on in the Department. Student attendance at the seminars will be required, with short written assignments (typically three per Quarter) to encourage thinking about the material presented in the talks.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 12 times (up to 12 units total)

GENE 224: Principles of Pharmacogenomics (BIOMEDIN 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

GENE 226: LONGEVITY VENTURE CAPITAL

Longevity covers therapeutics, robotics, and fintech. Yet as an emerging industry how do these get financed when they are so risky? How should venture firms evaluate longevity companies and how should founders attract investors and employees? This course will look at these questions specifically as applied to longevity, uniquely from the investor, scientist, and the founder viewpoint. After providing a foundation to the field we will interact with guest lectures from investors, scientists and company founders who can explain their respective perspectives. The course will cover finance and science aspects of longevity though no pre-requisites are expected.
Terms: Aut | Units: 2-3 | Repeatable 2 times (up to 6 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints