2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
by subject...

1 - 10 of 60 results for: EE ; Currently searching autumn courses. You can expand your search to include all quarters

EE 14N: Things about Stuff

Preference to freshmen. The stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves, for they elucidate broadly applicable scientific principles. Focus is on studying consumer devices; projects include building batteries, energy conversion devices and semiconductors from pocket change. Students may propose topics and projects of interest to them. The trajectory of the course is determined in large part by the students themselves.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Lee, T. (PI)

EE 100: The Electrical Engineering Profession

Lectures/discussions on topics of importance to the electrical engineering professional. Continuing education, professional societies, intellectual property and patents, ethics, entrepreneurial engineering, and engineering management.
Terms: Aut | Units: 1
Instructors: Pauly, J. (PI)

EE 108: Digital System Design

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. *In Autumn, enrollment preference is given to EE majors. Any EE majors who must enroll in Autumn are invited to contact the instructor. Formerly EE 108A.
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-AQR, GER:DB-EngrAppSci, WAY-SMA

EE 114: Fundamentals of Analog Integrated Circuit Design (EE 214A)

Analysis and simulation of elementary transistor stages, current mirrors, supply- and temperature-independent bias, and reference circuits. Overview of integrated circuit technologies, circuit components, component variations and practical design paradigms. Differential circuits, frequency response, and feedback will also be covered. Performance evaluation using computer-aided design tools. Undergraduates must take EE 114 for 4 units. Prerequisite: 101B. GER:DB-EngrAppSci
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR

EE 116: Semiconductor Devices for Energy and Electronics

The underpinnings of modern technology are the transistor (circuits), the capacitor (memory), and the solar cell (energy). EE 116 introduces the physics of their operation, their historical origins (including Nobel prize breakthroughs), and how they can be optimized for future applications. The class covers physical principles of semiconductors, including silicon and new material discoveries, quantum effects, band theory, operating principles, and device equations. Recommended (but not required) co-requisite: EE 65 or equivalent.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-FR

EE 134: Introduction to Photonics

Optics and photonics underpin the technologies that define our daily life, from communications and sensing to displays and imaging. This course provides an introduction to the principles that govern the generation, manipulation, and detection of light and will give students hands-on lab experience applying these principles to analyze and design working optical systems. The concepts we will cover form the basis for many systems in biology, optoelectronics, and telecommunications and build a foundation for further learning in photonics and optoelectronics. Connecting theory to observation and application is a major theme for the course. Prerequisite: EE 102A and one of the following: EE 42, Physics 43, or Physics 63.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR
Instructors: Congreve, D. (PI)

EE 153: Power Electronics (EE 253)

Addressing the energy challenges of today and the environmental challenges of the future will require efficient energy conversion techniques. This course will discuss the circuits used to efficiently convert ac power to dc power, dc power from one voltage level to another, and dc power to ac power. The components used in these circuits (e.g., diodes, transistors, capacitors, inductors) will also be covered in detail to highlight their behavior in a practical implementation. A lab will be held with the class where students will obtain hands on experience with power electronic circuits. For WIM credit, students must enroll in EE 153 for 4 units. No exceptions. Formerly EE 292J. Prerequisite: EE 101B.
Terms: Aut | Units: 3-4 | UG Reqs: WAY-SMA

EE 178: Probabilistic Systems Analysis

Introduction to probability and its role in modeling and analyzing real world phenomena and systems, including topics in statistics, machine learning, and statistical signal processing. Elements of probability, conditional probability, Bayes rule, independence. Discrete and continuous random variables. Signal detection. Functions of random variables. Expectation; mean, variance and covariance, linear MSE estimation. Conditional expectation; iterated expectation, MSE estimation, quantization and clustering. Parameter estimation. Classification. Sample averages. Inequalities and limit theorems. Confidence intervals. Prerequisites: Calculus at the level of MATH 51, CME 100 or equivalent and basic knowledge of computing at the level of CS106A.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

EE 179: Analog and Digital Communication Systems

This course covers the fundamental principles underlying the analysis, design and optimization of analog and digital communication systems. Design examples will be taken from the most prevalent communication systems today: cell phones, Wifi, radio and TV broadcasting, satellites, and computer networks. Analysis techniques based on Fourier transforms and energy/power spectral density will be developed. Mathematical models for random variables and random (noise) signals will be presented, which are used to characterize filtering and modulation of random noise. These techniques will then be used to design analog (AM and FM) and digital (PSK and FSK) communication systems and determine their performance over channels with noise and interference. Prerequisite: 102A.
Terms: Aut | Units: 3
Instructors: Pauly, J. (PI)

EE 185: Interactive Light Sculpture Project

Design, prototype, build, refine, program, and install a large interactive light sculpture in the Packard Building to celebrate the 125th anniversary of the EE department. Students may take the course for 1, 2, or 3 quarters; each quarter focuses on a different phase of the project. Topics covered include energy budgeting, communication, enclosure design, scalability, timing, circuit design, structural design, and safety. Prerequisite: ENGR 40M, or an introductory EE or CS course in circuits or programming.
Terms: Aut | Units: 3 | Repeatable 3 times (up to 9 units total)
Instructors: Levis, P. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints