2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 10 of 101 results for: CS ; Currently searching autumn courses. You can expand your search to include all quarters

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1
Instructors: Zelenski, J. (PI)

CS 7: Personal Finance for Engineers

Introduction to the fundamentals and analysis specifically needed by engineers to make informed and intelligent financial decisions. Course will focus on actual industry-based financial information from technology companies and realistic financial issues. Topics include: behavioral finance, budgeting, debt, compensation, stock options, investing and real estate. No prior finance or economics experience required.
Terms: Aut | Units: 1
Instructors: Nash, A. (PI)

CS 9: Problem-Solving for the CS Technical Interview

This course will prepare students to interview for software engineering and related internships and full-time positions in industry. Drawing on multiple sources of actual interview questions, students will learn key problem-solving strategies specific to the technical/coding interview. Students will be encouraged to synthesize information they have learned across different courses in the major. Emphasis will be on the oral and combination written-oral modes of communication common in coding interviews, but which are unfamiliar settings for problem solving for many students. Prerequisites: CS 106B or X.
Terms: Aut | Units: 1

CS 12SI: Introduction to Mobile Augmented Reality Design and Development

Over the course of 9 weeks, we'll be covering major components of mobile AR development with Unity and AR Foundations to dig deep into concepts such as Plane Detection, Object Placement, Image and Face Tracking, Graphics, and a lot more! The class will feature student lecturers from Stanford XR leaders who have experience developing XR applications and guest speakers from industry professionals. Throughout the class, you'll build your very own interactive AR app and share your work with others to showcase what you've learned. Prerequisite: CS 106A or equivalent basic coding experience.
Terms: Aut | Units: 1

CS 24: Minds and Machines (LINGUIST 35, PHIL 99, PSYCH 35, SYMSYS 1, SYMSYS 200)

(Formerly SYMSYS 100). An overview of the interdisciplinary study of cognition, information, communication, and language, with an emphasis on foundational issues: What are minds? What is computation? What are rationality and intelligence? Can we predict human behavior? Can computers be truly intelligent? How do people and technology interact, and how might they do so in the future? Lectures focus on how the methods of philosophy, mathematics, empirical research, and computational modeling are used to study minds and machines. Students must take this course before being approved to declare Symbolic Systems as a major. All students interested in studying Symbolic Systems are urged to take this course early in their student careers. The course material and presentation will be at an introductory level, without prerequisites. If you have any questions about the course, please email symsys1staff@gmail.com.
Terms: Aut | Units: 4 | UG Reqs: WAY-FR, GER:DB-SocSci

CS 25: Transformers United

Since their introduction in 2017, transformers have revolutionized Natural Language Processing (NLP). Now, transformers are finding applications all over Deep Learning, be it computer vision (CV), reinforcement learning (RL), Generative Adversarial Networks (GANs), Speech or even Biology. Among other things, transformers have enabled the creation of powerful language models like GPT 3 and were instrumental in DeepMind's recent Alphafold2, that tackles protein folding. In this seminar, we examine the details of how transformers work, and dive deep into the different kinds of transformers and how they're applied in different fields. We do this through a combination of instructor lectures, guest lectures, and classroom discussions. We will invite people at the forefront of transformers research across different domains for guest lectures. Prerequisites: Basic knowledge of Deep Learning (must understand attention) or CS224N/ CS231N/ CS230. To apply, fill out this form: https://forms.gle/TzAtqjZ4vnjhNMSy7
Terms: Aut | Units: 1
Instructors: Manning, C. (PI)

CS 44N: Great Ideas in Graphics

A hands-on interactive and fun exploration of great ideas from computer graphics. Motivated by graphics concepts, mathematical foundations and computer algorithms, students will explore an eccentric selection of "great ideas" through short weekly programming projects. Project topics will be selected from a diverse array of computer graphics concepts and historical elements.
Terms: Aut | Units: 3
Instructors: James, D. (PI)

CS 49N: Using Bits to Control Atoms

This is a crash course in how to use a stripped-down computer system about the size of a credit card (the rasberry pi computer) to control as many different sensors as we can implement in ten weeks, including LEDs, motion sensors, light controllers, and accelerometers. The ability to fearlessly grab a set of hardware devices, examine the data sheet to see how to use it, and stitch them together using simple code is a secret weapon that software-only people lack, and allows you to build many interesting gadgets. We will start with a "bare metal'' system --- no operating system, no support --- and teach you how to read device data sheets describing sensors and write the minimal code needed to control them (including how to debug when things go wrong, as they always do). This course differs from most in that it is deliberately mostly about what and why rather than how --- our hope is that the things you are able at the end will inspire you to follow the rest of the CS curriculum to understand better how things you've used work. Prerequisites: knowledge of the C programming language. A Linux or Mac laptop that you are comfortable coding on.
Terms: Aut, Sum | Units: 3
Instructors: Engler, D. (PI)

CS 80Q: Race and Gender in Silicon Valley (AFRICAAM 80Q)

Join us as we go behind the scenes of some of the big headlines about trouble in Silicon Valley. We'll start with the basic questions like who decides who gets to see themselves as "a computer person," and how do early childhood and educational experiences shape our perceptions of our relationship to technology? Then we'll see how those questions are fundamental to a wide variety of recent events from #metoo in tech companies, to the ways the under-representation of women and people of color in tech companies impacts the kinds of products that Silicon Valley brings to market. We'll see how data and the coming age of AI raise the stakes on these questions of identity and technology. How can we ensure that AI technology will help reduce bias in human decision-making in areas from marketing to criminal justice, rather than amplify it?
Terms: Aut | Units: 3 | UG Reqs: WAY-ED
Instructors: Lee, C. (PI)

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Aut, Win, Spr | Units: 1
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints