2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
by subject...

1 - 10 of 27 results for: BIOE ; Currently searching autumn courses. You can expand your search to include all quarters

BIOE 44: Fundamentals for Engineering Biology Lab

An introduction to next-generation techniques in genetic, molecular, biochemical, cellular and tissue engineering. Lectures cover advances in the field of synthetic biology with emphasis on genetic engineering, 3D bioprinting, plasmid design, gene synthesis, genetic circuits, safety and bio ethics. Lab modules will teach students how to: conduct basic lab techniques, add/remove DNA from living matter, engineer prokaryotic and eukaryotic cells, build a 3D bioprinter, and print cells. Group projects will build upon current research including: 3D bioprinting as an emerging field of synthetic biology, gene and genome engineering via decoupled design, component engineering with a focus on molecular design and quantitative analysis of experiments, device and system engineering using abstracted genetically encoded objects, and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 60: Beyond Bitcoin: Applications of Distributed Trust

In the past, people have relied on trusted third parties to facilitate the transactions that define our lives: how we store medical records, how we share genomic information with scientists and drug companies, where we get our news, and how we communicate. Advances in distributed systems and cryptography allow us to eschew such parties. Today, we can create a global, irrefutable ledger of transactions, events, and diagnoses, such that rewriting history is computationally infeasible. What can we build on top of such a powerful data structure? What are the consequences of pseudo-legal contracts and promises written in mathematical ink? In this class, we will bring together experts in cryptography, healthcare, and distributed consensus with students across the university. The first weeks present a technical overview of block chain primitives. In the following weeks, the class will focus on discussing applications and policy issues through lectures and guest speakers from various domains across both academia and industry. Limited enrollment, subject to instructor approval.
Terms: Aut | Units: 1
Instructors: Liphardt, J. (PI)

BIOE 101: Systems Biology (BIOE 210)

Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: CME 102; BIO 82, BIO 84; or consent of instructor.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

BIOE 141A: Senior Capstone Design I

Lecture/Lab. First course of two-quarter capstone sequence. Team based project introduces students to the process of designing new biological technologies to address societal needs. Topics include methods for validating societal needs, brainstorming, concept selection, and the engineering design process. First quarter deliverable is a design for the top concept. Second quarter involves implementation and testing. Guest lectures and practical demonstrations are incorporated. Prerequisites: BIOE 123 and BIOE 44. This course is open only to seniors in the undergraduate Bioengineering program.
Terms: Aut | Units: 4

BIOE 150: Biochemical Engineering (CHEMENG 150, CHEMENG 250)

Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism as well as recombinant DNA technology and synthetic biology (metabolic engineering). The course begins with a review of basic cell biology, proceeds to bioprocess design and development, and ends with applied synthetic biology methods and examples. Prerequisite: CHEMENG 181 or equivalent.
Terms: Aut | Units: 3

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 210: Systems Biology (BIOE 101)

Terms: Aut | Units: 3

BIOE 213: Stochastic and Nonlinear Dynamics (APPPHYS 223, BIO 223, PHYSICS 223)

Theoretical analysis of dynamical processes: dynamical systems, stochastic processes, and spatiotemporal dynamics. Motivations and applications from biology and physics. Emphasis is on methods including qualitative approaches, asymptotics, and multiple scale analysis. Prerequisites: ordinary and partial differential equations, complex analysis, and probability or statistical physics.
Terms: Aut | Units: 3
Instructors: Fisher, D. (PI)

BIOE 214: Representations and Algorithms for Computational Molecular Biology (BIOMEDIN 214, CS 274, GENE 214)

Topics: This is a graduate level introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, chemoinformatics, pharmacogenetics, network biology. Note: For Fall 2021, Dr. Altman will be away on sabbatical and so class will be taught from lecture videos recorded in fall of 2018. The class will be entirely online, with no scheduled meeting times. Lectures will be released in batches to encourage pacing. A team of TAs will manage all class logistics and grading. Firm prerequisite: CS 106B.
Terms: Aut | Units: 3-4
Instructors: Altman, R. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints