2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 38 of 38 results for: PHYSICS ; Currently searching spring courses. You can expand your search to include all quarters

PHYSICS 362: The Early Universe

Intended to complement PHYSICS 361, this course will cover the earlier period in cosmology up to and including nucleosynthesis. The focus will be on high energy, early universe physics. This includes topics such as inflation and reheating including generation of density perturbations and primordial gravitational waves, baryogenesis mechanisms, out of equilibrium particle production processes in the early universe e.g. both thermal and non-thermal production mechanisms for dark matter candidates such as WIMPs and axions, and production of the light nuclei and neutrinos. Techniques covered include for example out of equilibrium statistical mechanics such as the Boltzmann equation, and dynamics of scalar fields in the expanding universe. Other possible topics if time permits may include cosmological phase transitions and objects such as monopoles and primordial black holes. We will use quantum field theory, although it will hopefully be accessible for those without much background in that area. Suggested prerequisites: general relativity at the level of PHYSICS 262, some knowledge of cosmology and in particular the basics of FRW cosmology as in PHYSICS 361 for example, and some knowledge of quantum field theory e.g. at the level of PHYSICS 331 as a corequisite.
Terms: Spr | Units: 3

PHYSICS 367: Special Topics in Astrophysics: Extreme Astrophysics

Modern astrophysics explores physical processes in remote environments that prescribe, apply, and explore fundamental processes under conditions that are far more extreme than those attainable in a terrestrial laboratory. These include the production and interaction of peta eV gamma rays, peta eV neutrinos, and zetta eV cosmic rays by black holes and the behavior of 100 giga Tesla magnetic field anchored by neutron stars. The connection between observations, experiments, and the underlying physics will be emphasized. This course is intended for graduate students but should be accessible to advanced undergraduates. An understanding of basic general relativity and introductory quantum electrodynamics will be helpful but is not essential.
Terms: Spr | Units: 3 | Repeatable 5 times (up to 15 units total)

PHYSICS 373: Condensed Matter Theory II

Superfluidity and superconductivity. Quantum magnetism. Prerequisite: PHYSICS 372.
Terms: Spr | Units: 3
Instructors: Qi, X. (PI)

PHYSICS 452: Inflationary Cosmology

This course describes the origin and the present status of inflationary cosmology. The main topics include: The Big Bang theory and the theory of cosmological phase transitions. Formation of domain walls, cosmic strings, and monopolies. Problems of the Big Bang theory, and solving these problems in inflationary cosmology. Main conceptual steps: Starobinsky model, old inflation, new inflation, chaotic inflation, eternal inflation. Reheating of the universe after inflation. Inflationary perturbations and the large-scale structure formation. Inflationary gravitational waves. Popular inflationary models such as hybrid inflation, natural inflation, Higgs inflation, and alpha-attractors. Testing inflationary models. Theory of tunneling and stochastic approach to inflation. The problem of initial conditions. Inflation in supergravity and string theory. Wave function of the universe, quantum cosmology, multiverse, and string theory landscape. Suggested prerequisites: general relativity at the level of PHYSICS 262 and some knowledge of quantum field theory at the level of PHYSICS 331.
Terms: Spr | Units: 3
Instructors: Linde, A. (PI)

PHYSICS 470: Topics in Modern Condensed Matter Theory I: Many Body Quantum Dynamics

Many body quantum systems can display rich dynamical phenomena far from thermal equilibrium. Understanding the non-equilibrium dynamics of quantum matter represents an exciting research frontier at the interface of condensed matter and AMO physics, high energy theory and quantum information. This is particularly topical in light of experimental advances in building quantum simulators and intermediate-scale quantum computers, which naturally operate in far-from-equilibrium regimes. This course is intended to serve as an introduction to this active research area, assuming only a knowledge of quantum mechanics and statistical physics. Topics covered include: quantum thermalization, quantum chaos, many-body localization, quantum entanglement and its dynamics, Floquet theory and time crystals, quantum circuits, quantum simulation, and tensor network methods. Prerequisites: PHYSICS 113, PHYSICS 130, PHYSICS 131, PHYSICS 170, and PHYSICS 171.
Terms: Spr | Units: 3 | Repeatable for credit

PHYSICS 490: Research

Open only to Physics graduate students, with consent of instructor. Work is in experimental or theoretical problems in research, as distinguished from independent study of a non-research character in 190 and 293.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Instructors: Abel, T. (PI) ; Ahmed, Z. (PI) ; Akerib, D. (PI) ; Allen, S. (PI) ; Altman, R. (PI) ; Baccus, S. (PI) ; Baer, T. (PI) ; Batzoglou, S. (PI) ; Beasley, M. (PI) ; Bejerano, G. (PI) ; Bhattacharya, J. (PI) ; Blandford, R. (PI) ; Block, S. (PI) ; Bloom, E. (PI) ; Boahen, K. (PI) ; Boettcher, C. (PI) ; Boneh, D. (PI) ; Bouland, A. (PI) ; Boxer, S. (PI) ; Breidenbach, M. (PI) ; Brodsky, S. (PI) ; Bryant, Z. (PI) ; Bucksbaum, P. (PI) ; Burchat, P. (PI) ; Burke, D. (PI) ; Bustamante, C. (PI) ; Byer, R. (PI) ; Cabrera, B. (PI) ; Chao, A. (PI) ; Chatterjee, S. (PI) ; Chichilnisky, E. (PI) ; Chiu, W. (PI) ; Choi, J. (PI) ; Chu, S. (PI) ; Church, S. (PI) ; Clark, S. (PI) ; Dai, H. (PI) ; Das, R. (PI) ; Devakul, T. (PI) ; Devereaux, T. (PI) ; Digonnet, M. (PI) ; Dimopoulos, S. (PI) ; Dixon, L. (PI) ; Doniach, S. (PI) ; Drell, P. (PI) ; Dror, R. (PI) ; Druckmann, S. (PI) ; Dunne, M. (PI) ; Edwards, M. (PI) ; Ermon, S. (PI) ; Fan, S. (PI) ; Fejer, M. (PI) ; Feldman, B. (PI) ; Fetter, A. (PI) ; Fisher, I. (PI) ; Fox, J. (PI) ; Friedland, A. (PI) ; Gaffney, K. (PI) ; Ganguli, S. (PI) ; Glenzer, S. (PI) ; Glover, G. (PI) ; Goldhaber-Gordon, D. (PI) ; Good, B. (PI) ; Gorinevsky, D. (PI) ; Graham, P. (PI) ; Gratta, G. (PI) ; Graves, E. (PI) ; Harbury, P. (PI) ; Haroush, K. (PI) ; Harris, J. (PI) ; Hartnoll, S. (PI) ; Hastings, J. (PI) ; Hayden, P. (PI) ; Heinz, T. (PI) ; Hewett, J. (PI) ; Himel, T. (PI) ; Hoeksema, J. (PI) ; Hogan, J. (PI) ; Hollberg, L. (PI) ; Holmes, S. (PI) ; Huang, P. (PI) ; Huang, Z. (PI) ; Huberman, B. (PI) ; Hwang, H. (PI) ; Inan, U. (PI) ; Irwin, K. (PI) ; Jaros, J. (PI) ; Jones, B. (PI) ; Jornada, F. (PI) ; Kachru, S. (PI) ; Kahn, S. (PI) ; Kallosh, R. (PI) ; Kamae, T. (PI) ; Kapitulnik, A. (PI) ; Karkare, K. (PI) ; Kasevich, M. (PI) ; Khemani, V. (PI) ; Kivelson, S. (PI) ; Kling, M. (PI) ; Knight, R. (PI) ; Kosovichev, A. (PI) ; Kundaje, A. (PI) ; Kuo, C. (PI) ; Kurinsky, N. (PI) ; Laughlin, R. (PI) ; Leane, R. (PI) ; Lee, Y. (PI) ; Lev, B. (PI) ; Levin, C. (PI) ; Levitt, M. (PI) ; Linde, A. (PI) ; Lipa, J. (PI) ; Luth, V. (PI) ; Mabuchi, H. (PI) ; Madejski, G. (PI) ; Manoharan, H. (PI) ; Mao, W. (PI) ; Marinelli, A. (PI) ; Markland, T. (PI) ; Melosh, N. (PI) ; Michelson, P. (PI) ; Mistlberger, B. (PI) ; Moerner, W. (PI) ; Moler, K. (PI) ; Monzani, M. (PI) ; Nelson, T. (PI) ; Nishi, Y. (PI) ; Ozgur, A. (PI) ; Palanker, D. (PI) ; Pande, V. (PI) ; Papanicolaou, G. (PI) ; Partridge, R. (PI) ; Pelc, N. (PI) ; Peskin, M. (PI) ; Petrosian, V. (PI) ; Pianetta, P. (PI) ; Poon, A. (PI) ; Prinz, F. (PI) ; Qi, X. (PI) ; Quake, S. (PI) ; Raghu, S. (PI) ; Raubenheimer, T. (PI) ; Reis, D. (PI) ; Romani, R. (PI) ; Roodman, A. (PI) ; Rotskoff, G. (PI) ; Rowson, P. (PI) ; Rubinstein, A. (PI) ; Ruth, R. (PI) ; Safavi-Naeini, A. (PI) ; Schaan, E. (PI) ; Scherrer, P. (PI) ; Schindler, R. (PI) ; Schleier-Smith, M. (PI) ; Schnitzer, M. (PI) ; Schroeder, D. (PI) ; Schuster, D. (PI) ; Schuster, P. (PI) ; Schwartzman, A. (PI) ; Senatore, L. (PI) ; Shen, Z. (PI) ; Shenker, S. (PI) ; Shutt, T. (PI) ; Sidford, A. (PI) ; Silverstein, E. (PI) ; Simon, J. (PI) ; Smith, T. (PI) ; Spakowitz, A. (PI) ; Spudich, J. (PI) ; Stanford, D. (PI) ; Stohr, J. (PI) ; Su, D. (PI) ; Susskind, L. (PI) ; Suzuki, Y. (PI) ; Tanaka, H. (PI) ; Tantawi, S. (PI) ; Tartakovsky, D. (PI) ; Thomas, S. (PI) ; Tompkins, L. (PI) ; Toro, N. (PI) ; Vasy, A. (PI) ; Vernieri, C. (PI) ; Vuckovic, J. (PI) ; Vuletic, V. (PI) ; Wacker, J. (PI) ; Wagoner, R. (PI) ; Wechsler, R. (PI) ; Wein, L. (PI) ; Wieman, C. (PI) ; Wong, H. (PI) ; Wootters, M. (PI) ; Wu, W. (PI) ; Yamamoto, Y. (PI) ; Yamins, D. (PI)

PHYSICS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

PHYSICS 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: Abel, T. (PI) ; Akerib, D. (PI) ; Allen, S. (PI) ; Baer, T. (PI) ; Beasley, M. (PI) ; Bhattacharya, J. (PI) ; Blandford, R. (PI) ; Block, S. (PI) ; Bloom, E. (PI) ; Boahen, K. (PI) ; Breidenbach, M. (PI) ; Brodsky, S. (PI) ; Brongersma, M. (PI) ; Bryant, Z. (PI) ; Bucksbaum, P. (PI) ; Burchat, P. (PI) ; Burke, D. (PI) ; Bustamante, C. (PI) ; Byer, R. (PI) ; Cabrera, B. (PI) ; Chao, A. (PI) ; Chichilnisky, E. (PI) ; Chu, S. (PI) ; Church, S. (PI) ; Clark, S. (PI) ; Dai, H. (PI) ; Devakul, T. (PI) ; Devereaux, T. (PI) ; Digonnet, M. (PI) ; Dimopoulos, S. (PI) ; Dixon, L. (PI) ; Doniach, S. (PI) ; Drell, P. (PI) ; Druckmann, S. (PI) ; Dunham, E. (PI) ; Dunne, M. (PI) ; Fan, S. (PI) ; Feldman, B. (PI) ; Fisher, I. (PI) ; Funk, S. (PI) ; Gaffney, K. (PI) ; Ganguli, S. (PI) ; Glenzer, S. (PI) ; Glover, G. (PI) ; Goldhaber-Gordon, D. (PI) ; Gorinevsky, D. (PI) ; Graham, P. (PI) ; Gratta, G. (PI) ; Graves, E. (PI) ; Grill-Spector, K. (PI) ; Harris, J. (PI) ; Hartnoll, S. (PI) ; Hastings, J. (PI) ; Hayden, P. (PI) ; Hewett, J. (PI) ; Hogan, J. (PI) ; Hollberg, L. (PI) ; Huang, Z. (PI) ; Hwang, H. (PI) ; Inan, U. (PI) ; Irwin, K. (PI) ; Jaros, J. (PI) ; Jones, B. (PI) ; Kachru, S. (PI) ; Kahn, S. (PI) ; Kallosh, R. (PI) ; Kamae, T. (PI) ; Kapitulnik, A. (PI) ; Kasevich, M. (PI) ; Khemani, V. (PI) ; Kivelson, S. (PI) ; Kundaje, A. (PI) ; Kuo, C. (PI) ; Laughlin, R. (PI) ; Lee, Y. (PI) ; Lev, B. (PI) ; Levitt, M. (PI) ; Linde, A. (PI) ; Luth, V. (PI) ; Mabuchi, H. (PI) ; Macintosh, B. (PI) ; Madejski, G. (PI) ; Manoharan, H. (PI) ; Mao, W. (PI) ; Marinelli, A. (PI) ; Michelson, P. (PI) ; Moerner, W. (PI) ; Moler, K. (PI) ; Monzani, M. (PI) ; Palanker, D. (PI) ; Peskin, M. (PI) ; Petrosian, V. (PI) ; Pianetta, P. (PI) ; Prinz, F. (PI) ; Qi, X. (PI) ; Quake, S. (PI) ; Raghu, S. (PI) ; Raubenheimer, T. (PI) ; Romani, R. (PI) ; Roodman, A. (PI) ; Ruth, R. (PI) ; Safavi-Naeini, A. (PI) ; Scherrer, P. (PI) ; Schindler, R. (PI) ; Schleier-Smith, M. (PI) ; Schnitzer, M. (PI) ; Schuster, P. (PI) ; Schwartzman, A. (PI) ; Senatore, L. (PI) ; Shen, Z. (PI) ; Shenker, S. (PI) ; Shutt, T. (PI) ; Silverstein, E. (PI) ; Simon, J. (PI) ; Smith, T. (PI) ; Spakowitz, A. (PI) ; Spudich, J. (PI) ; Stanford, D. (PI) ; Stohr, J. (PI) ; Su, D. (PI) ; Susskind, L. (PI) ; Suzuki, Y. (PI) ; Tanaka, H. (PI) ; Tompkins, L. (PI) ; Toro, N. (PI) ; Vasy, A. (PI) ; Vuckovic, J. (PI) ; Vuletic, V. (PI) ; Wacker, J. (PI) ; Wechsler, R. (PI) ; Wieman, C. (PI) ; Wong, H. (PI) ; Yamamoto, Y. (PI) ; Yamins, D. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints