2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: APPPHYS

APPPHYS 61: Science as a Creative Process (BIO 61)

What is the process of science, and why does creativity matter? We'll delve deeply into the applicability of science in addressing a vast range of real-world problems. This course is designed to teach the scientific method as it's actually practiced by working scientists. It will cover how to ask a well-posed question, how to design a good experiment, how to collect and interpret quantitative data, how to recover from error, and how to communicate findings. Facts matter! Course topics will include experimental design, statistics and statistical significance, formulating appropriate controls, modeling, peer review, and more. The course will incorporate a significant hands-on component featuring device fabrication, testing, and measurement. Among other "Dorm Science" activities, we'll be distributing Arduino microcontroller kits and electronic sensors, then use these items, along with other materials, to complete a variety of group and individual projects outside the classroom. The final course assignment will be to develop and write a scientific grant proposal to test a student-selected myth or scientific controversy. Although helpful, no prior experience with electronics or computer programming is required. Recommended for freshmen.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

APPPHYS 77N: Functional Materials and Devices

Preference to freshmen. Exploration via case studies how functional materials have been developed and incorporated into modern devices. Particular emphasis is on magnetic and dielectric materials and devices. Recommended: high school physics course including electricity and magnetism.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Suzuki, Y. (PI)

APPPHYS 79Q: Energy Options for the 21st Century

Preference to sophomores.. Choices for meeting the future energy needs of the U.S. and the world. Basic physics of energy sources, technologies that might be employed, and related public policy issues. Trade-offs and societal impacts of different energy sources. Policy options for making rational choices for a sustainable world energy economy.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Fox, J. (PI)

APPPHYS 203: Atoms, Fields and Photons

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and ordinary differential equations. Structure of single- and multi-electron atoms and molecules, and cold collisions. Phenomenology and quantitative modeling of atoms in strong fields, with modern applications. Introduction to quantum optical theory of atom-photon interactions, including quantum trajectory theory, mechanical effects of light on atoms, and fundamentals of laser spectroscopy and coherent control.
Terms: Aut | Units: 4

APPPHYS 237: Evolution by the numbers (BIO 251)

Topics in evolution from a quantitative perspective. From basic principles of evolutionary dynamics to fundamental questions that are far-from-being answered; from early life, metabolic processes, and the molding of the earth by microbes, to spread of human epidemics; from analysis of genomes and molecular phylogenies to aspects of multi-cellular development. Intended for students with no biology background as well as biology students who are comfortable with probability and ordinary differential equations. Advanced undergraduate as well.
Terms: Aut | Units: 3
Instructors: Fisher, D. (PI)

APPPHYS 273: Solid State Physics II

Introduction to the many-body aspects of crystalline solids. Second quantization of phonons, anharmonic effects, polaritons, and scattering theory. Second quantization of Fermi fields. Electrons in the Hartree-Fock and random phase approximation; electron screening and plasmons. Magnetic exchange interactions. Electron-phonon interaction in ionic/covalent semiconductors and metals; effective attractive electron-electron interactions, Cooper pairing, and BCS description of the superconducting state. Prerequisite: APPPHYS 272 or PHYSICS 172.
Terms: Aut | Units: 3
Instructors: Hwang, H. (PI)

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: Baer, T. (PI) ; Beasley, M. (PI) ; Bienenstock, A. (PI) ; Block, S. (PI) ; Brongersma, M. (PI) ; Bucksbaum, P. (PI) ; Byer, R. (PI) ; Chu, S. (PI) ; Clemens, B. (PI) ; Das, R. (PI) ; Devereaux, T. (PI) ; Digonnet, M. (PI) ; Dionne, J. (PI) ; Doniach, S. (PI) ; Druckmann, S. (PI) ; Dunne, M. (PI) ; El Gamal, A. (PI) ; Fan, S. (PI) ; Fejer, M. (PI) ; Feldman, B. (PI) ; Fetter, A. (PI) ; Fisher, D. (PI) ; Fisher, I. (PI) ; Fox, J. (PI) ; Ganguli, S. (PI) ; Geballe, T. (PI) ; Glenzer, S. (PI) ; Goldhaber-Gordon, D. (PI) ; Harris, J. (PI) ; Harrison, W. (PI) ; Heinz, T. (PI) ; Hesselink, L. (PI) ; Hogan, D. (PI) ; Hogan, J. (PI) ; Hollberg, L. (PI) ; Hong, G. (PI) ; Huang, Z. (PI) ; Hwang, H. (PI) ; Kachru, S. (PI) ; Kapitulnik, A. (PI) ; Kasevich, M. (PI) ; Kenny, T. (PI) ; Khuri-Yakub, B. (PI) ; Lee, Y. (PI) ; Lev, B. (PI) ; Levin, C. (PI) ; Lindenberg, A. (PI) ; Lobell, D. (PI) ; Mabuchi, H. (PI) ; Manoharan, H. (PI) ; Miller, D. (PI) ; Moerner, W. (PI) ; Moler, K. (PI) ; Nilsson, A. (PI) ; Osheroff, D. (PI) ; Palanker, D. (PI) ; Pease, R. (PI) ; Petrosian, V. (PI) ; Prakash, M. (PI) ; Quake, S. (PI) ; Quate, C. (PI) ; Raubenheimer, T. (PI) ; Reed, E. (PI) ; Reis, D. (PI) ; Safavi-Naeini, A. (PI) ; Schnitzer, M. (PI) ; Shen, Z. (PI) ; Solgaard, O. (PI) ; Spakowitz, A. (PI) ; Stohr, J. (PI) ; Sturrock, P. (PI) ; Suzuki, Y. (PI) ; Tantawi, S. (PI) ; Vuckovic, J. (PI) ; Winick, H. (PI) ; Yamamoto, Y. (PI) ; Zhang, S. (PI)

APPPHYS 345: Advanced Numerical Methods for Data Analysis and Simulation

Gaussian and unit sphere quadrature, singular value decomposition and principal component analysis, Krylov methods, non-linear fitting and super-resolution, independent component analysis, 3d reconstruction, "shrink-wrap", hidden Markov methods, support vector machines, simulated annealing, molecular dynamics and parallel tempering, Markov state methods, Monte Carlo methods for constrained systems.
Terms: Aut | Units: 3

APPPHYS 390: Dissertation Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

APPPHYS 470: Condensed Matter Seminar

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints