2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

291 - 300 of 333 results for: all courses

PHYSICS 25: Modern Physics

How do the discoveries since the dawn of the 20th century impact our understanding of 21st-century physics? This course introduces the foundations of modern physics: Einstein's theory of special relativity and quantum mechanics. Combining the language of physics with tools from algebra and trigonometry, students gain insights into how the universe works on both the smallest and largest scales. Topics may include atomic, molecular, and laser physics; semiconductors; elementary particles and the fundamental forces; nuclear physics (fission, fusion, and radioactivity); astrophysics and cosmology (the contents and evolution of the universe). Emphasis on applications of modern physics in everyday life, progress made in our understanding of the universe, and open questions that are the subject of active research. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 23 or PHYSICS 23S.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Irwin, K. (PI)

PHYSICS 41: Mechanics

How are motions of objects in the physical world determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. The distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems are drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on the language of mathematics, particularly vector representations and operations, and calculus. Physical understanding is fostered by peer interaction and demonstrations in lecture, and discussion sec more »
How are motions of objects in the physical world determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. The distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems are drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on the language of mathematics, particularly vector representations and operations, and calculus. Physical understanding is fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem-solving. Please enroll in a section that you can attend regularly. In order to register for this class students who have never taken an introductory Physics course at Stanford must complete the Physics Placement Diagnostic at https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Students who complete the Physics Placement Diagnostic by 3 PM (Pacific) on Friday will have their hold lifted over the weekend. Prerequisites: Physics placement diagnostic AND Math 20 or higherCorequisites: Completion of OR co-enrollment of Math 21 or higher. Since high school math classes vary widely, it is recommended that you take at least one math class at Stanford before or concurrently with Physics 41. In addition, it is recommended that you take Math 51 or CME 100 before taking the next course in the Physics 40 series, Physics 43.
Terms: Aut, Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E ( Physics 41 Extended) is a 5-unit version of Physics 41 (4 units) for students with little or no high school physics. Course topics and mathematical complexity are similar, but not identical to Physics 41. There is an additional class meeting every week, and attendance at all class sessions is mandatory. The extra classroom time and corresponding extra study time outside of class allows students to engage with concepts and become fluent in mathematical tools that include vector representations and operations, and relevant calculus. There is a strong emphasis on developing problem-solving skills, particularly as applied to real world examples, to leave students prepared for subsequent engineering, physics, or related courses they may take. The course will explore important physical principles in mechanics including: using Newton's Laws and torque to analyze static structures and forces; understanding the equations of kinematics; and utilizing energy in its many forms and more »
Physics 41E ( Physics 41 Extended) is a 5-unit version of Physics 41 (4 units) for students with little or no high school physics. Course topics and mathematical complexity are similar, but not identical to Physics 41. There is an additional class meeting every week, and attendance at all class sessions is mandatory. The extra classroom time and corresponding extra study time outside of class allows students to engage with concepts and become fluent in mathematical tools that include vector representations and operations, and relevant calculus. There is a strong emphasis on developing problem-solving skills, particularly as applied to real world examples, to leave students prepared for subsequent engineering, physics, or related courses they may take. The course will explore important physical principles in mechanics including: using Newton's Laws and torque to analyze static structures and forces; understanding the equations of kinematics; and utilizing energy in its many forms and applications. Prerequisites: Physics placement diagnostic AND Math 20 or higher. Corequisites: Completion of OR co-enrollment of Math 21 or higher. Since high school math classes vary widely, it is recommended that you take at least one math class at Stanford before or concurrently with Physics 41. In addition, it is recommended that you take Math 51 or CME 100 before taking the next course in the Physics 40 series, Physics 43. Priority will be given to students who have had little physics background.
Terms: Win | Units: 5 | UG Reqs: WAY-SMA

PHYSICS 43: Electricity and Magnetism

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. Prerequisite: PHYSICS 41, 41E or equivalent. MATH 21 or MATH 51 or CME 100 or equivalent. Recommended corequisite: MATH 52 or CME 102. Please make sure your AP scores are uploaded before enrollment opens.
Terms: Win, Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 45: Light and Heat

What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction more »
What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite: PHYSICS 41 or equivalent. MATH 21 or MATH 51 or CME 100 or equivalent.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 50: Astronomy Laboratory and Observational Astronomy

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.
Last offered: Summer 2019 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 61: Mechanics and Special Relativity

(First in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, the space-time invariant, causality, relativistic momentum and energy, and invariant mass. Central forces, friction, contact forces, linear restoring forces. Momentum, work, energy, collisions. Angular momentum, torque, center of mass, moment of inertia, precession. Conserved quantities. Uses the language of vectors and multivariable calculus. Requirements to enroll in the course: Completion of Physics Placement Diagnostic and/or completion of at least one course in PHYSICS 20 or 40 series. Completion of or co-enrollment in MATH 51 or MATH 61CM or MATH 61DM. Prerequisites: mechanics at the level of PHYSICS 41 or score of 5 on AP Physics C Mechanics or equivalent; calculus at the level of MATH 21 or score of 5 on AP Calculus BC or equivalent.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 70: Foundations of Modern Physics

Required for Physics or Engineering Physics majors who completed the PHYSICS 40 series. Introduction to special relativity: reference frames, Michelson-Morley experiment. Postulates of relativity, simultaneity, time dilation. Length contraction, the Lorentz transformation, causality. Doppler effect. Relativistic mechanics and mass, energy, momentum relations. Introduction to quantum physics: atoms, electrons, nuclei. Quantization of light, Planck constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling, WKB, and approximate solutions. Time-dependent and multi-dimensional solution concepts. Coulomb potential and hydrogen atom structure. Prerequisites: PHYSICS 41, PHYSICS 43. Pre or corequisite: PHYSICS 45. Recommended: prior or concurrent registration in MATH 53. Physics 70 will no longer be offered after Autumn 2022.
Last offered: Autumn 2022 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 71: Quantum and Thermal Physics

(Second in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course introduces the foundations of quantum mechanics and thermodynamics to students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Topics related to quantum mechanics include atoms, electrons, and nuclei. Experimental evidence for physics that is not explained by classical mechanics and E&M. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms Heisenberg uncertainty relationships. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling. Topics related to thermodynamics: limitations of classical mechanics in describing systems with a very large number of particles. Ideal gas, equipartition, heat capacity, the definit more »
(Second in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course introduces the foundations of quantum mechanics and thermodynamics to students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Topics related to quantum mechanics include atoms, electrons, and nuclei. Experimental evidence for physics that is not explained by classical mechanics and E&M. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms Heisenberg uncertainty relationships. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling. Topics related to thermodynamics: limitations of classical mechanics in describing systems with a very large number of particles. Ideal gas, equipartition, heat capacity, the definition of temperature, entropy. A brief introduction to kinetic theory and statistical mechanics. Maxwell speed distribution, ideal gas in a box. Laws of thermodynamics. Cycles, heat engines, free energy. Prerequisites: Physics 61 and ( Math 51 or Math 61CM). Corequisite: Physics 43 or equivalent (e.g. AP Physics C E&M), MATH 52 or 62CM. This course was offered as PHYSICS 65 prior to Academic Year 2022-2023.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 81: Electricity and Magnetism Using Special Relativity and Vector Calculus

(Third in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course recasts the foundations of electricity and magnetism in a way that will surprise, delight, and challenge students who have already encountered the subject at a college or AP level. Suitable for students contemplating a major in Physics or Engineering Physics, those interested in a rigorous treatment of physics as a foundation for other disciplines, or those curious about powerful concepts like transformations, symmetry, and conservation laws. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field as a consequence of special relativity applied to electrostatics, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Displacement current, Maxwell's equations. Electromagnetic waves. Throughout, we'll see the objects and theorems of vector calculus become manifest in charges, currents, and electromagnetic fields. Prerequisite: A score of 5 on the AP Physics C E&M exam or Physics 43; Physics 61; and Math 52 or Math 62CM. Recommended prerequisite: Physics 71. Corequisite: Math 53 or Math 63CM. This course was offered as PHYSICS 63 prior to Academic Year 2022-2023.
Terms: Spr | Units: 4 | UG Reqs: WAY-FR, WAY-SMA, GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints