2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: ee103

CME 103: Introduction to Matrix Methods (EE 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut | Units: 4-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

EE 103: Introduction to Matrix Methods (CME 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

MATH 104: Applied Matrix Theory

Linear algebra for applications in science and engineering: orthogonality, projections, spectral theory for symmetric matrices, the singular value decomposition, the QR decomposition, least-squares, the condition number of a matrix, algorithms for solving linear systems. ( Math 113 offers a more theoretical treatment of linear algebra.) Prerequisites: Math 51 and programming experience on par with CS106nnMath 104 and EE103/CME103 cover complementary topics in applied linear algebra. The focus of Math 104 is on algorithms and concepts; the focus of EE103 is on a few linear algebra concepts, and many applications.
Terms: Aut, Win | Units: 3 | UG Reqs: GER:DB-Math
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints