2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 87 results for: ENERGY

ENERGY 203: The Energy Transformation Collaborative

Solving the global energy challenge will require the creation and successful scale-up of hundreds of new ventures. This project-based course provides a launchpad for the development and creation of transformational energy ventures and innovation models. Interdisciplinary teams will research, analyze, and develop detailed launch plans for high-impact opportunities in the context of the new energy venture development framework offered in this course.
Terms: Aut, Win, Spr | Units: 1-3

ENERGY 204: Achieving Universal Energy Access by 2030: Can it be done?

Today 1.2 billion people have no access to electricity; many more don't have power that is reliable. Activities the developed world counts on for economic growth are severely limited where there isn't reliable electricity. Cost reductions in distributed, renewable energy generation and battery storage technologies are creating opportunities to bring affordable power to communities that have never had it. This course will examine what will need to be in place so that electricity can reach everyone by 2030.
Terms: Spr | Units: 2-3

ENERGY 214: The Global Price of Oil

Understanding the current and future price of oil requires the synthesis of geologic, engineering, financial, geopolitical, and macroeconomic information. In this seminar, we will build a global supply curve for petroleum by studying the marginal and full-cycle production costs for each of the major resource categories. We will study how reserve classification varies globally, and how global petroleum resources and reserves have changed and are likely to change over time. We will further investigate how the time lag between resource discovery, project sanctioning, and full production will affect future supply. Finally, we will study the elasticity of oil demand and how that demand is likely to change over time as the developing world gets richer and as competition from other energy sources increases.
Terms: Win, Spr | Units: 1
Instructors: House, K. (PI)

ENERGY 216: Entrepreneurship in Energy

The combined forces of climate change, technological development, and geopolitics are disrupting the energy industry, yet the competitiveness and regulated nature of the mature markets for fuel, power, and materials have created meaningful barriers to entry for startup companies. In this case based course, students will study real energy startups to understand what challenges they have overcome and continue to face. Each week, the course will focus on a different company and the founder or CEO of that company will present. Topics will include advanced battery technologies, photovoltaic manufacturing, solar and wind project development, oil & gas exploration & production, advanced biofuels, electric vehicles, distributed power generation, and financing energy startups.
Terms: Aut | Units: 2
Instructors: House, K. (PI)

ENERGY 217: Research Seminar: Energy Development in the Emerging Economy

Through this research project, students will dive into and gain firsthand experience on evaluating the efficacy of a portfolio of 34 energy technology start-up projects in emerging economies that encompasses a range of regions, energy sectors, and technologies. Student's will learn from each project's unique experiences, and gather critical data that may help support the success of future similar endeavors. Some questions students will be looking to answer include (1) Was the project able to accomplish its goal(s)? (2) Are there common success factors or similar roadblocks? (3) Is the technology and/or solution still effective and operational?nPrerequisite: submit survey https://precourt.typeform.com/to/NdtU0Z and permission of instructor.
Terms: Aut | Units: 2-3
Instructors: Benson, S. (PI)

ENERGY 221: Fundamentals of Multiphase Flow (ENERGY 121)

Multiphase flow in porous media. Wettability, capillary pressure, imbibition and drainage, Leverett J-function, transition zone, vertical equilibrium. Relative permeabilities, Darcy's law for multiphase flow, fractional flow equation, effects of gravity, Buckley-Leverett theory, recovery predictions, volumetric linear scaling, JBN and Jones-Rozelle determination of relative permeability. Frontal advance equation, Buckley-Leverett equation as frontal advance solution, tracers in multiphase flow, adsorption, three-phase relative permeabilities.
Terms: Win | Units: 3
Instructors: Tchelepi, H. (PI)

ENERGY 222: Advanced Reservoir Engineering

Lectures, problems. General flow equations, tensor permeabilities, steady state radial flow, skin, and succession of steady states. Injectivity during fill-up of a depleted reservoir, injectivity for liquid-filled reservoirs. Flow potential and gravity forces, coning. Displacements in layered reservoirs. Transient radial flow equation, primary drainage of a cylindrical reservoir, line source solution, pseudo-steady state. May be repeated for credit. Prerequisite: 221.
Terms: Spr | Units: 3 | Repeatable for credit

ENERGY 223: Reservoir Simulation

Fundamentals of petroleum reservoir simulation. Equations for multicomponent, multiphase flow between gridblocks comprising a petroleum reservoir. Relationships between black-oil and compositional models. Techniques for developing black-oil, compositional, thermal, and dual-porosity models. Practical considerations in the use of simulators for predicting reservoir performance. Class project. Prerequisite: 221 and 246, or consent of instructor. Recommended: CME 206.
Terms: Win | Units: 3-4

ENERGY 224: Advanced Reservoir Simulation

Topics include modeling of complex wells, coupling of surface facilities, compositional modeling, dual porosity models, treatment of full tensor permeability and grid nonorthogonality, local grid refinement, higher order methods, streamline simulation, upscaling, algebraic multigrid solvers, unstructured grid solvers, history matching, other selected topics. Prerequisite: 223 or consent of instructor. May be repeated for credit.
Terms: Aut | Units: 3 | Repeatable for credit

ENERGY 225: Theory of Gas Injection Processes

Lectures, problems. Theory of multicomponent, multiphase flow in porous media. Miscible displacement: diffusion and dispersion, convection-dispersion equations and its solutions. Method of characteristic calculations of chromatographic transport of multicomponent mixtures. Development of miscibility and interaction of phase behavior with heterogeneity. May be repeated for credit. Prerequisite: CME 200.
Terms: Spr | Units: 3 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints