2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 140 results for: all courses

ECON 137: Decision Modeling and Information

Effective decision models consider a decision maker's alternatives, information and preferences. The construction of such models in single-party situations with emphasis on the role of information. The course then evolves to two-party decision situations where one party has more information than the other. Models examined include: bidding exercises and the winner's curse, the Akerlof Model and adverse selection, the Principal-Agent model and risk sharing, moral hazard and contract design. Prerequisite: ECON 102A or equivalent. Recommended: Econ 50, Optimization and simulation in Excel.
Terms: Spr | Units: 5 | UG Reqs: WAY-FR, WAY-AQR
Instructors: McKeon, S. (PI)

ECON 160: Game Theory and Economic Applications

Introduction to game theory and its applications to economics. Topics: strategic and extensive form games, dominant strategies, Nash equilibrium, subgame-perfect equilibrium, and Bayesian equilibrium. The theory is applied to repeated games, oligopoly, auctions, and bargaining with examples from economics and political science. Prerequisites: Working knowledge of calculus and basic probability theory.
Last offered: Spring 2023 | UG Reqs: WAY-FR, WAY-SI

ECON 180: Honors Game Theory

Rigorous introduction to game theory and applications. Topics include solution concepts for static and dynamic games of complete and incomplete information, signaling games, repeated games, bargaining, and elements of cooperative game theory. Applications mainly from economics, but also political science, biology, and computer science. Prerequisites: Experience with abstract mathematics and willingness to work hard. No background in economics required.
Last offered: Autumn 2019 | UG Reqs: GER:DB-SocSci, WAY-FR, WAY-SI

EE 102A: Signals and Systems I

Concepts and tools for continuous- and discrete-time signal and system analysis with applications in signal processing, communications, and control. Mathematical representation of signals and systems. Linearity and time invariance. System impulse and step responses. System frequency response. Frequency-domain representations: Fourier series and Fourier transforms. Filtering and signal distortion. Time/frequency sampling and interpolation. Continuous-discrete-time signal conversion and quantization. Discrete-time signal processing. Prerequisites: MATH 53 or CME 102. EE 102A may be taken concurrently with either course, provided students have proficiency in complex numbers.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

EE 102B: Signals and Systems II

Continuation of EE 102A. Concepts and tools for continuous- and discrete-time signal and system analysis with applications in communications, signal processing and control. Analog and digital modulation and demodulation. Sampling, reconstruction, decimation and interpolation. Finite impulse response filter design. Discrete Fourier transforms, applications in convolution and spectral analysis. Laplace transforms, applications in circuits and feedback control. Z transforms, applications in infinite impulse response filter design. Prerequisite: EE 102A.
Terms: Spr | Units: 4 | UG Reqs: WAY-FR, GER:DB-EngrAppSci, WAY-AQR

EE 116: Semiconductor Devices for Energy and Electronics

The underpinnings of modern technology are the transistor (circuits), the capacitor (memory), and the solar cell (energy). EE 116 introduces the physics of their operation, their historical origins (including Nobel prize breakthroughs), and how they can be optimized for future applications. The class covers physical principles of semiconductors, including silicon and new material discoveries, quantum effects, band theory, operating principles, and device equations. Recommended (but not required) co-requisite: EE 65 or equivalent.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-FR

EE 142: Engineering Electromagnetics

Introduction to electromagnetism and Maxwell's equations in static and dynamic regimes. Electrostatics and magnetostatics: Gauss's, Coulomb's, Faraday's, Ampere's, Biot-Savart's laws. Electric and magnetic potentials. Boundary conditions. Electric and magnetic field energy. Electrodynamics: Wave equation; Electromagnetic waves; Phasor form of Maxwell's equations.Solution of the wave equation in 1D free space: Wavelength, wave-vector, forward and backward propagating plane waves.Poynting's theorem. Propagation in lossy media, skin depth. Reflection and refraction at planar boundaries, total internal reflection. Solutions of wave equation for various 1D-3D problems: Electromagnetic resonators, waveguides periodic media, transmission lines. Formerly EE 141. Prerequisites: an introductory course in electromagnetics ( PHYSICS 43, PHYSICS 63, PHYSICS 81, or EE 42) and a solid background in vector calculus ( CME 100, CME 102, or MATH 52, with MATH 52 being an ideal prerequisite)
Terms: Spr | Units: 3 | UG Reqs: WAY-FR, WAY-SMA, GER:DB-EngrAppSci

EE 178: Probabilistic Systems Analysis

Introduction to probability and its role in modeling and analyzing real world phenomena and systems, including topics in statistics, machine learning, and statistical signal processing. Elements of probability, conditional probability, Bayes rule, independence. Discrete and continuous random variables. Signal detection. Functions of random variables. Expectation; mean, variance and covariance, linear MSE estimation. Conditional expectation; iterated expectation, MSE estimation, quantization and clustering. Parameter estimation. Classification. Sample averages. Inequalities and limit theorems. Confidence intervals. Prerequisites: Calculus at the level of MATH 51, CME 100 or equivalent and basic knowledge of computing at the level of CS106A.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

ENERGY 120: Mass and Energy Transport in Porous Media (ENGR 120)

Engineering topics in mass and energy transport in porous media relevant to energy systems. Mass, momentum and energy conservation equations in porous structures. Single phase and multiphase flow through porous media. Gas laws. Introduction to thermodynamics. Chemical, physical, and thermodynamic properties of liquids and gases in the subsurface.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

ENGLISH 184F: Literary Text Mining 2: Studies in Cultural Analytics

In this course, students will learn how to apply quantitative and computational methods for analyzing text to questions that are of significance to Literary Studies, and the humanities more broadly. Beginning with a series of readings and discussions on the theoretical implications of using quantitative methods for literary analysis, we will move to in-depth instruction in more advanced methods for computational text analysis, including topic models, word embeddings, and large language models. Students will not only become familiar with training and querying these models, but, more importantly, will gain hands-on experience in how to build these analytical techniques into humanities-based research.
Terms: Win | Units: 3-5 | UG Reqs: WAY-AQR, WAY-FR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints