2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 11 results for: CHEM ; Currently searching summer courses. You can expand your search to include all quarters

CHEM 31A: Chemical Principles I

31A is the first course in a two-quarter sequence designed to provide a robust foundation in key chemical principles for students with a basic background in high school chemistry, who have already placed into Math 19 or higher. The course engages students in group problem-solving activities throughout the class periods to deepen their ability to analyze and solve chemical problems. Students will also participate in a weekly laboratory activity that will immediately apply and expand upon classroom content. Labs and write-ups provide practice developing conceptual models that can explain qualitatively and quantitatively a wide range of chemical phenomena. The course will introduce a common language of dimensional analysis, stoichiometry, and molecular naming that enables students to write chemical reactions, quantify reaction yield, and calculate empirical and molecular formulas. Stoichiometry will be immediately reinforced through a specific study of gases and their properties. Student more »
31A is the first course in a two-quarter sequence designed to provide a robust foundation in key chemical principles for students with a basic background in high school chemistry, who have already placed into Math 19 or higher. The course engages students in group problem-solving activities throughout the class periods to deepen their ability to analyze and solve chemical problems. Students will also participate in a weekly laboratory activity that will immediately apply and expand upon classroom content. Labs and write-ups provide practice developing conceptual models that can explain qualitatively and quantitatively a wide range of chemical phenomena. The course will introduce a common language of dimensional analysis, stoichiometry, and molecular naming that enables students to write chemical reactions, quantify reaction yield, and calculate empirical and molecular formulas. Stoichiometry will be immediately reinforced through a specific study of gases and their properties. Students will also build a fundamental understanding of atomic and molecular structure by identifying interactions among nuclei, electrons, atoms and molecules. Through both lab and in-class exploration, students will learn to explain how these interactions determine the structures and properties of pure substances and mixtures using various bonding models including Lewis Dot, VSEPR, and Molecular Orbital Theory. Students will identify and quantitate the types and amounts of energy changes that accompany these interactions, phase changes, and chemical reactions, as they prepare to explore chemical dynamics in greater depth in 31B. Special emphasis will be placed on applying content and skills to real world applications such as estimating the carbon efficiency of fossil fuels, understanding hydrogen bonding and other interactions critical to DNA, and calculating the pressure exerted on a deep-sea diver. Prerequisites: Math 18 and Chem11 or placement into Chem31A with Autumn General Chemistry Placement test. All students who are interested in taking general chemistry at Stanford must take the General Chemistry Placement Test before the Autumn quarter begins, regardless of chemistry background, to enroll.
Terms: Aut, Sum | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci

CHEM 31B: Chemical Principles II

Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be p more »
Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be placed on acid/base equilibria , allowing students to explore the role of buffers and antacids in our bodies, as well as ocean acidification and the impact on coral reefs. Students will then bring together concepts from both kinetics and equilibrium, in a deeper discussion of thermodynamics, to understand what ultimately influences the spontaneity of a reaction. Students will build a relationship between free energy, temperature, and equilibrium constants to be able to calculate the free energy of a reaction and understand how processes in our body are coupled to harness excess free energy to do useful work. Finally we will explore how we harness work from redox reactions, building both voltaic cells (i.e. batteries) and electrolytic cells in lab, and using reduction potentials to predict spontaneity and potential of a given reaction. We will look at the applications of redox chemistry in electric and fuel cell vehicles. The course's particular emphasis on understanding the driving forces of a reaction, especially the influence of thermodynamics versus kinetics, will prepare students for further study of predicting organic chemical reactivity and equilibria from structure in Chem 33. Prerequisite: Chem 31A.
Terms: Win, Sum | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci

CHEM 33: Structure and Reactivity of Organic Molecules

An introduction to organic chemistry, the molecular foundation to understanding the life sciences, medicine, diagnostics, energy, environmental and materials sciences. Students will learn structural and bonding models of organic molecules that provide insights into reactivity. Combining these models with kinetic and thermodynamic analyses allows molecular transformations to be rationalized and even predicted. The course builds on this knowledge to begin to introduce organic reactions that can be applied to synthesis of novel molecules or materials that can positively impact society. A two-hour weekly lab section accompanies the course to introduce the techniques of separation and identification of organic compounds.
Terms: Win, Spr, Sum | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci

CHEM 90: Directed Instruction/Reading

Undergraduates pursue a reading program under supervision of a faculty member in Chemistry; may also involve participation in lab. Prerequisites: superior work in CHEM 31A, 31B, 31M, or 33; and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable 4 times (up to 8 units total)

CHEM 121: Understanding the Natural and Unnatural World through Chemistry

Students enrolled in this course will appreciate the transformative power of molecular science on the modern world and how foundational knowledge of chemistry enables profound discoveries in biological, pharmaceutical, agrochemical, engineering, energy, and materials science research. This course integrates the lessons of CHEM 31 and CHEM 33 through an examination of the structure-function properties of carbon-based molecules. Specific emphasis is given to the chemistry of carbonyl- and amine-derived compounds, polyfunctionalized molecules, reaction kinetics and thermodynamics, mechanistic arrow-pushing, and retrosynthetic analysis. Students will be empowered with a conceptual understanding of chemical reactivity, physical organic chemistry, and the logic of chemical synthesis. The singular nature of molecular design and synthesis to make available functional molecules and materials will be revealed. A three-hour lab section provides hands on experience with modern chemical methods for preparative and analytical chemistry. Prerequisite CHEM 33 or co-requisite CHEM 100.
Terms: Aut, Spr, Sum | Units: 5 | UG Reqs: GER: DB-NatSci

CHEM 190: Advanced Undergraduate Research

By special arrangement with a faculty member. May be repeated 8 times for a max of 27 units. Prerequisite: CHEM 121 or CHEM 131. Corequisite: CHEM 300.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable 9 times (up to 27 units total)

CHEM 200: Research and Special Advanced Work

Qualified graduate students undertake research or advanced lab work not covered by listed courses under the direction of a member of the teaching staff.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

CHEM 299: Teaching of Chemistry

Required of all teaching assistants in Chemistry. Techniques of teaching chemistry by means of lectures and labs.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

CHEM 301: Research in Chemistry

Required of graduate students who have passed the qualifying examination. Open to qualified graduate students with the consent of the major professor. Research seminars and directed reading deal with newly developing areas in chemistry and experimental techniques. May be repeated for credit. Search for adviser name on Axess.
Terms: Aut, Win, Spr, Sum | Units: 2 | Repeatable for credit

CHEM 390: Curricular Practical Training for Chemists

For Chemistry majors who need work experience as part of their program of study. Confer with Chem student services office for signup.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints