2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

81 - 90 of 278 results for: all courses

CHEM 33: Structure and Reactivity of Organic Molecules

An introduction to organic chemistry, the molecular foundation to understanding of life, energy, and material science. Students will learn structural and bonding models of organic molecules that provide insights into chemical, physical, and reactivity properties, in addition to their biological activities. Combining these models with kinetic and thermodynamic analyses allows molecular interconversions to be rationalized. Translation of this knowledge to more complex systems empowers the synthesis of novel molecules or materials that can positively impact our society and environment. A two-hour weekly lab section accompanies the course to introduce the techniques of separation and identification of organic compounds. Pre-requisite: CHEM 31A and 31B, or CHEM 31M, or CHEM 31X, or AP Chemistry score of 5.
Terms: Win, Spr, Sum | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci

CHEM 134: Instrumental Analysis Principles and Practice

The core objectives of the course will focus upon introducing and providing hands-on practice with analytical separation, spectroscopic identification, and calibrated quantification with strong technical communication (for the Writing-in-the-Major requirement) emphasized throughout the course. Lectures will focus on theory, and laboratory activities will provide hands-on practice with the GC, LC, XPS, ICP, MS, and UV/Vis instruments. Data analysis will be emphasized throughout the course with MATLAB being the primary tool for plotting and computations. Statistical measurements will be introduced to gauge the quality and validity of data. Lectures will be three times a week with a required four-hour laboratory section. The course will conclude with a student-developed project, focusing upon separation and quantification, and a poster presentation. The course should be completed prior to CHEM courses 174,176, or 184. Prerequisite: CHEM 33 or CHEM 100.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA, WAY-AQR

CHEMENG 20: Introduction to Chemical Engineering (ENGR 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

CHEMENG 31N: When Chemistry Meets Engineering

Preference to freshmen. Chemistry and engineering are subjects that are ubiquitous around us. But what happens when the two meet? Students will explore this question by diving into experimental problems that scientists and engineers have to face on a daily basis. Many processes that are taken for granted have been developed by understanding science at a very fundamental level and then applying it to large and important industrial processes. In this seminar, students will explore some of the basic concepts that are important to address chemical engineering problems through experimental work. Students will build materials for energy and environmental applications, understand how to separate mixtures into pure compounds, produce fuels, and will learn to look at the chemical properties of molecules that are part of daily life with a different eye.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA

CHPR 130: Human Nutrition (HUMBIO 130)

The study of food, and the nutrients and substances therein. Their action, interaction, and balance in relation to health and disease. Emphasis is on the biological, chemical, and physiological processes by which humans ingest, digest, absorb, transport, utilize, and excrete food. Dietary composition and individual choices are discussed in relationship to the food supply, and to population and cultural, race, ethnic, religious, and social economic diversity. The relationships between nutrition and disease; ethnic diets; vegetarianism; nutritional deficiencies; nutritional supplementation; phytochemicals. HUMBIO students must enroll in HUMBIO 130. CHPR master's students must enroll for a letter grade. Undergraduate prerequisite: Human Biology Core or Biology Foundations or consent of instructor.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA

COMPMED 80N: Animal behavior: sex, death, and sometimes food!

Preference to freshman. Behavior is what makes animals special (thirsty plants don't walk to water), but why do animals behave the way they do? What does their behavior tell us about their inner lives, and about ourselves? What do lipstick and cuckoos and fireflies have in common? Why would nobody want to be a penguin? What do mice say to each other in their pee-mail? Learning how to think about questions like these gives us a unique perspective on the natural world. Format: Discussion and criticism of video examples, documentaries, and research papers. Topics: History and approaches to animal behavior; development of behavior, from genetics to learning; mechanisms of behavior, from neurons to motivation; function of behavior, from honest signals to selfish genes; the phylogeny of behavior, from domestication to speciation; and modern applications of behavior, from abnormal behavior, to conservation, to animal welfare, and animal consciousness.
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Garner, J. (PI)

COMPMED 81Q: Aardvarks to Zebras: The A to Z of Animal Anatomy

Preference to sophomores.Ever wonder what cats and narwhals have in common? Maybe you haven't, but despite their seemingly different lifestyles and habitats (i.e. sleeping on couches versus swimming in oceans), they are both mammals! In this seminar, students will gain an appreciation for basic mammalian anatomic and physiologic principles that span across multiple species while emphasizing key differences that render each species unique. Through student projects, we will explore evolutionary adaptations that have driven the success of a variety of species within the context of their natural environments. In addition to a weekly lecture, weekly laboratory sessions will reinforce anatomic principles through a combination of rodent cadaver dissection, organ and bone specimens, and use of virtual reality demonstrations. Furthermore, students will have the opportunity to visit Año Nuevo State Park to experience a guided viewing of northern elephant seals within their natural habitat. Students with a passion for science will gain a fundamental understanding of anatomy that is applicable to future careers in medicine, biomedical research, veterinary medicine, and ecology/conservation.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Casey, K. (PI)

COMPMED 84Q: Globally Emerging Zoonotic Diseases

Preference to sophomores. Infectious diseases impacting veterinary and human health around the world today. Mechanisms of disease, epidemiology, and underlying diagnostic, treatment and control principles associated with these pathogens.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Felt, S. (PI)

COMPMED 87Q: Laboratory Mouse in Biomedical Research

Preference to sophomores. This course focuses on the laboratory mouse, a widely used and important biomedical research model. We will explore the natural history and origin of the laboratory mouse; the ethics and regulations on the use of mice in research; the characteristics and nomenclature of commonly used mouse strains; the anatomy, physiology, and husbandry of laboratory mice; common mouse diseases and their effects on research; mouse coat color genetics and its relevance to human diseases; immunodeficient mouse models and their uses in biomedical research; and the technology for genetically engineering laboratory mice (e.g., transgenic mice). The laboratory component of the course uses live or dead mice to provide hands-on experience with mouse handling; necropsy; anesthesia and surgery; identification methods; and techniques commonly used in biomedical research. Enrollment limited to 14 students.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Nagamine, C. (PI)

EARTH 2: Climate and Society

How and why is the climate changing? How might a changing climate affect human society? And what can we do to alter the course of climate change and adapt to any climatic changes that do occur? This course provides an introduction to the natural science and social science of climate change. The focus is on what science tells us about the causes, consequences, and solutions to climate change, as well as on how scientific progress is made on these issues.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints