## PHYSICS 13N: A Taste of Quantum Physics (APPPHYS 13N)

What is quantum physics and what makes it so weird? We'll introduce key aspects of quantum physics with an aim to explain why it differs from everyday 'classical' physics. Quantum-enabled devices like the laser and atomic clocks for GPS will be explained. We will also discuss the breakthroughs driving the 2nd quantum technology revolution surrounding quantum simulators, sensors, and computers. Seminar discussions and a laser lab will help illustrate core principles, including the atomic clock mechanism. Visits to campus laboratories will introduce cutting-edge quantum experiments. This IntroSem is designed for those likely to go on to major in the humanities or in a STEM program outside of the natural sciences. (Likely STEM majors are instead encouraged to take 100-level quantum courses upon completion of pre-requirements.) While basic familiarity with high school physics is recommended, qualitative explanations will be emphasized. By the end of the quarter, you will be able to explain the key tenets of quantum physics, how it has enabled current technology, and what new technologies might emerge from the 2nd quantum revolution.

Terms: Aut
| Units: 3
| UG Reqs: WAY-SMA

Instructors:
Lev, B. (PI)

## PHYSICS 15: Stars and Planets in a Habitable Universe

How do stars form from the gas in galaxies? How do stars and galaxies evolve, and how can these processes give rise to planets and the conditions suitable for life? How do we, from our little corner of the cosmos, collect and decipher information about the Universe? This course covers the solar system and celestial motions, the life cycle of stars, the structure of our Milky Way galaxy, and the discovery of exoplanets: planets orbiting stars beyond our Sun. Intended to be accessible to non-science majors, the material is explored quantitatively with problem sets using basic algebra and numerical estimates. Sky observing and observatory field trips supplement the coursework.

Terms: Aut
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Clark, S. (PI)

## PHYSICS 21: Mechanics and Fluids

How are the motions of solids and liquids determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on applying Newton's laws to solids and liquids to describe diverse phenomena. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and interactive group problem solving. Prerequisite: high school algebra and trigonometry; calculus not required.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Michelson, P. (PI)
;
Nanavati, C. (PI)
;
Crust, K. (TA)
...
more instructors for PHYSICS 21 »

Instructors:
Michelson, P. (PI)
;
Nanavati, C. (PI)
;
Crust, K. (TA)
;
Gudinas, A. (TA)
;
Herson, K. (TA)
;
Rahman, A. (TA)
;
Safvati, B. (TA)
;
Yang, C. (TA)

## PHYSICS 22: Mechanics, Fluids, and Heat Laboratory

Guided hands-on exploration of concepts in classical mechanics, fluids, and thermodynamics with an emphasis on student predictions, observations and explanations. Pre- or corequisite:
PHYSICS 21.

Terms: Aut
| Units: 1

Instructors:
Devin, J. (PI)
;
Deroo, V. (TA)
;
Ding, C. (TA)
;
Miao, C. (TA)
;
Satterthwaite, T. (TA)

## PHYSICS 41: Mechanics

How are motions of objects in the physical world determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. The distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems are drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on the language of mathematics, particularly vector representations and operations, and calculus. Physical understanding is fostered by peer interaction and demonstrations in lecture, and discussion sec
more »

How are motions of objects in the physical world determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. The distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems are drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on the language of mathematics, particularly vector representations and operations, and calculus. Physical understanding is fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem-solving. Please enroll in a section that you can attend regularly. In order to register for this class students who have never taken an introductory Physics course at Stanford must complete the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Students who complete the Physics Placement Diagnostic by 3 PM (Pacific) on Friday will have their hold lifted over the weekend. Minimum prerequisites: High school physics and
MATH 19 (or equivalent high school calculus if sufficiently rigorous). Minimum co-requisite:
MATH 20 or equivalent (if possible, taking
Math 20 as a prerequisite and
Math 21 as a co-requisite is recommended). Since high school math classes vary widely, it is recommended that you take at least one math class at Stanford before or concurrently with
Physics 41. In addition, it is recommended that you take
Math 51 or
CME 100 before taking the next course in the
Physics 40 series,
Physics 43.

Terms: Aut, Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Blakemore, C. (PI)
;
Nanni, E. (PI)
;
Tompkins, L. (PI)
...
more instructors for PHYSICS 41 »

Instructors:
Blakemore, C. (PI)
;
Nanni, E. (PI)
;
Tompkins, L. (PI)
;
-, I. (TA)
;
Batra, G. (TA)
;
Bindon, S. (TA)
;
Campello, A. (TA)
;
Dolev, K. (TA)
;
Manwadkar, V. (TA)
;
Mittal, D. (TA)
;
Nee, M. (TA)
;
Sundaresan, G. (TA)
;
Yuan, A. (TA)

## PHYSICS 42: Classical Mechanics Laboratory

Hands-on exploration of concepts in classical mechanics: Newton's laws, conservation laws, rotational motion. Introduction to laboratory techniques, experimental equipment and data analysis. Pre- or corequisite:
PHYSICS 41.

Terms: Aut, Win
| Units: 1

Instructors:
Devin, J. (PI)
;
Alary, A. (TA)
;
Calvera, V. (TA)
...
more instructors for PHYSICS 42 »

Instructors:
Devin, J. (PI)
;
Alary, A. (TA)
;
Calvera, V. (TA)
;
Dacunha, T. (TA)
;
Shiferaw, M. (TA)

## PHYSICS 45: Light and Heat

What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction
more »

What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite:
PHYSICS 41 or equivalent.
MATH 21 or
MATH 51 or
CME 100 or equivalent.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Hayden, P. (PI)
;
Dyson, T. (TA)
;
Koh, D. (TA)
;
Pecastaings, M. (TA)
;
Singh, J. (TA)
;
Wei, X. (TA)

## PHYSICS 46: Light and Heat Laboratory

Hands-on exploration of concepts in geometrical optics, wave optics and thermodynamics. Pre- or corequisite:
PHYSICS 45.

Terms: Aut
| Units: 1

## PHYSICS 59: Frontiers of Physics Research

Recommended for prospective Physics or Engineering Physics majors or anyone with an interest in learning about the big questions and unknowns that physicists tackle in their research at Stanford. Weekly faculty presentations, in some cases followed by tours of experimental laboratories where the research is conducted.

Terms: Aut
| Units: 1

Instructors:
Tam, F. (PI)

## PHYSICS 61: Mechanics and Special Relativity

(First in a three-part series:
PHYSICS 61,
PHYSICS 71,
PHYSICS 81.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, the space-time invariant, causality, relativistic momentum and energy, and invariant mass. Central forces, friction, contact forces, linear restoring forces. Momentum, work, energy, collisions. Angular momentum, torque, center of mass, moment of inertia, precession. Conserved quantities. Uses the language of vectors and multivariable calculus. Requirements to enroll in the course: Completion of Physics Placement Diagnostic and/or completion of at least one course in PHYSICS 20 or 40 series. Completion of or co-enrollment in
MATH 51 or
MATH 61CM or
MATH 61DM. Prerequisites: mechanics at the level of
PHYSICS 41 or score of 5 on AP Physics C Mechanics or equivalent; calculus at the level of
MATH 21 or score of 5 on AP Calculus BC or equivalent.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

Filter Results: