2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

111 - 120 of 298 results for: ME

ME 243: Designing Emotion-Reactive Car Interfaces

How to design in car interfaces that take into account the emotional state of the driver in the moment of driving? Participants will be prototyping and testing interfaces for an industry partner. The challenge is to take real time responsive data to infer the emotional state of a driver and to lever these to improve the driving experience. We will cover topics on design methodology, psychology of emotions, and human machine interaction to reflect and work on the emotionally charged car experience of today to imagine the car of tomorrow. Class meetings will include: prototyping, discussions and presentations. Participants will have access to tools, prototyping materials, and a car. Students from all ENG majors but also beyond are encouraged to join. Bring your drivers license, if you have one. May be repeat for credit.
Terms: Aut | Units: 1-3 | Repeatable 2 times (up to 3 units total)
Instructors: Karanian, B. (PI)

ME 244: Mechanotransduction in Cells and Tissues (BIOE 283, BIOPHYS 244)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted.
Terms: Aut | Units: 3

ME 250: Internal Combustion Engines

Internal combustion engines including conventional and turbocharged spark ignition, and diesel engines. Lectures: basic engine cycles, engine components, methods of analysis of engine performance, pollutant emissions, and methods of engine testing. Lab involves hands-on experience with engines and test hardware. Limited enrollment. Prerequisites: 140.
Terms: Aut | Units: 1-5

ME 257: Turbine and Internal Combustion Engines (ME 357)

Principles of design analysis for aircraft gas turbines and automotive piston engines. Analysis for aircraft engines performed for Airbus A380 type aircraft. Design parameters determined considering aircraft aerodynamics, gas turbine thermodynamics, compressible flow physics, and material limitations. Additional topics include characteristics of main engine components, off-design analysis, and component matching. Performance of automotive piston engines including novel engine concepts in terms of engine thermodynamics, intake and exhaust flows, and in-cylinder flow.
Terms: Spr | Units: 3

ME 260: Fuel Cell Science and Technology

Emphasis on proton exchange membrane (PEM) and solid oxide fuel cells (SOFC), and principles of electrochemical energy conversion. Topics in materials science, thermodynamics, and fluid mechanics. Prerequisites: MATH 43, PHYSICS 55, and ENGR 30 or ME 140, or equivalents.
Last offered: Spring 2016

ME 261: Dynamic Systems, Vibrations and Control (ME 161)

(Graduate students only enroll in 261.) Modeling, analysis, and measurement of mechanical and electromechanical systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple degree of freedom systems. Stability, resonance, amplification and attenuation, and control system design. Demonstrations and laboratory experiments. Prerequisite: Calculus (differentiation and integration), ordinary differential equations (e.g., CME 102 or MATH53), basic linear algebra (determinants and solving linear equations), and familiarity with basic dynamics (F=m*a) and electronics (v=i*R). ME undergraduates must enroll for 4 units with lab. All others should enroll for 3 units without lab.
Terms: Aut, Spr | Units: 3-4

ME 262: Physics of Wind Energy (CEE 261B)

Formerly CEE 261. An introduction to the analysis and modeling of wind energy resources and their extraction. Topics include the physical origins of atmospheric winds; vertical profiles of wind speed and turbulence over land and sea; the wind energy spectrum and its modification by natural topography and built environments; theoretical limits on wind energy extraction by wind turbines and wind farms; modeling of wind turbine aerodynamics and wind farm performance. Final project will focus on development of a new wind energy technology concept. Prerequisites: CEE 262A or ME 351A
Last offered: Winter 2016

ME 263: The Chair

Students design and fabricate a highly refined chair. The process is informed and supported by historical reference, anthropometrics, form studies, user testing, material investigations, and workshops in wood steam-bending, plywood forming, metal tube bending, TIG & MIG welding, upholstery & sewing. Pre-req: ME 203 Design and Manufacturing. May be repeat for credit.
Last offered: Winter 2016 | Repeatable 2 times (up to 8 units total)

ME 264: d.science: Design for Science

Where does design fit into scientific research? In this class, we will design for how data are collected, how data are communicated, and how to apply scientific insights to community-based projects. This year's projects are inspired by the Citizen Science movement and The Year of the Bay. We will use human-centered design methods to understand the needs of bay area citizens through hands-on data collection, public data exploration and collaboration with local industry, government and research partners.nWith guest lectures from the design and science community, research mentors, and skills workshops, you will develop an actionable understanding of the challenges of collecting good data, the complexities of creating engaging stories with quantitative data, and the challenges of balancing insights from both human-centered design research and scientific research. One of the three class projects will involve visualizing and mapping big data. No prior programming or statistics experience required.nEnrollment limited to 24. This course is open to graduate students from all schools and departments. Apply the first day of class.
Last offered: Spring 2013 | Repeatable 2 times (up to 8 units total)

ME 265: Technology Licensing and Commercialization

Course focuses on how to bridge the gap between creation and commercialization with new ideas, inventions, and technology (not limited to mechanical engineering). Covers business strategies and legal aspects of determining what can be owned and licensed, how to determine commercial value, and what agreements and other paperwork is necessary. Discussion includes aspects of Contract and Intellectual Property law as well as provisions of license agreements and their negotiation. All materials provided including many sample documents.
Terms: Spr | Units: 3
Instructors: Hustein, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints