2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 511 results for: CSI::certificate

CEE 107A: Understanding Energy (CEE 207A, EARTHSYS 103)

Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. For example, energy production and use is the number one source of greenhouse gas emissions. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system and think critically about how and why society has chosen particular energy resources. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change, sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD based on student schedules). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Website: http://web.stanford.edu/class/cee207a/ Course was formerly called Energy Resources.nPrerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

CEE 107F: Understanding Energy -- Field Trips (CEE 207F, EARTHSYS 103F)

This course is only for students who have already taken CEE 107A/207A/ Earthsys 103 -- Understanding Energy. Please contact Kirsten Stasio (kstasio@stanford.edu) for instructor consent code.
Terms: Aut, Spr | Units: 1

CEE 125: Defining Smart Cities: Visions of Urbanism for the 21st Century (CEE 225, URBANST 174)

In a rapidly urbanizing world, "the city" paves the way toward sustainability and social well-being. But what does it mean for a city to be smart? Does that also make it sustainable or resilient or livable? This seminar delves into current debates about urbanism through weekly talks by experts on topics such as big data, human-centered design, new urbanism, and natural capital. How urban spaces are shaped, for better or worse, by the complex interaction of cutting-edge technology, human societies, and the natural environment. The goal is to provoke vigorous discussion and to foster an understanding of cities that is at once technological, humanistic, and ecologically sound.
Terms: Aut | Units: 1-2

CEE 126: International Urbanization Seminar: Cross-Cultural Collaboration for Sustainable Urban Development (EARTHSYS 138, IPS 274, URBANST 145)

Comparative approach to sustainable cities, with focus on international practices and applicability to China. Tradeoffs regarding land use, infrastructure, energy and water, and the need to balance economic vitality, environmental quality, cultural heritage, and social equity. Student teams collaborate with Chinese faculty and students partners to support urban sustainability projects. Limited enrollment via application; see internationalurbanization.org for details. Prerequisites: consent of the instructor(s).
Terms: Aut | Units: 4-5 | UG Reqs: WAY-SI

CEE 141A: Infrastructure Project Development (CEE 241A)

Infrastructure is critical to the economy, global competitiveness and quality of life. Topics include energy, transportation, water, public facilities, and communications sectors. Analysis of the condition of the nation's infrastructure and how projects are planned and financed. Focus is on public works in the U.S. The role of public and private sectors through a step-by-step study of the project development process. Case studies of real infrastructure projects. Industry guest speakers. Student teams prepare project environmental impact statements.
Terms: Aut | Units: 3

CEE 141B: Infrastructure Project Delivery (CEE 241B)

Infrastructure is critical to the economy, global competitiveness and quality of life. Topics include energy, transportation, water, public facilities ,and communications sectors. Analysis of how projects are designed, constructed, operated, and maintained. Focus is on public works projects in the U.S. Alternative project delivery approaches and organizational strategies. Case studies of real infrastructure projects. Industry guest speakers. Student teams prepare finance/design/build/operate/maintain project proposals.
Terms: Win | Units: 3
Instructors: Sedar, B. (PI)

CEE 141C: Global Infrastructure Projects Seminar (CEE 241C)

Nine current global infrastructure projects presented by top project executives or company leaders from industry. Water, transportation, energy and communication projects are featured. Course provides comparisons of project development, win and delivery approaches for mega-projects around the world. Alternative project delivery methods, the role of public and private sector, different project management and construction strategies, and lessons learned. The course also includes field trips to local mega-projects.
Terms: Spr | Units: 1-2

CEE 144: Design and Innovation for the Circular Economy

The last 150 years of our industrial evolution have been material and energy intensive. The linear model of production and consumption manufactures goods from raw materials, wells and uses them, and then discards the products as waste. Circular economy provides a framework for systems-level redesign. It builds on schools of thought including regenerative design, performance economy industrial ecology, blue economy, biomimicry, and cradle to cradle. This course introduces the concepts of the circular economy and applies them to case studies of consumer products, household goods, and fixed assets.n nStudents will conduct independent projects on circular economy. Students may work alone or in small teams under the guidance of the teaching team and various collaborators worldwide. Class is limited to 14 students. All disciplines are welcome. This class fulfills the Writing & Rhetoric 2 requirement. Prerequisite: PWR 1.
Terms: Spr | Units: 3 | UG Reqs: Writing 2

CEE 155: Introduction to Sensing Networks for CEE (CEE 255)

Introduce the design and implementation of sensor networks for monitoring the built and natural environment. Emphasis on the integration of modern sensor and communication technologies, signal processing and statistical models for network data analysis and interpretation to create practical deployments to enable sustainable systems, in areas such as energy, weather, transportation and buildings. Students will be involved in a practical project that may involve deploying a small sensor system, data models and analysis and signal processing. Limited enrollment.
Terms: Win | Units: 3

CEE 156: Building Systems (CEE 256)

HVAC, lighting, and envelope systems for commercial and institutional buildings, with a focus on energy efficient design. Knowledge and skills required in the development of low-energy buildings that provide high quality environment for occupants.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Kolderup, E. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints