2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

101 - 110 of 272 results for: all courses

EARTHSYS 104: The Water Course (GEOPHYS 70)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Last offered: Winter 2018 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 110: Introduction to the Foundations of Contemporary Geophysics (GEOPHYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, GER: DB-NatSci, WAY-SMA

EARTHSYS 111: Biology and Global Change (BIO 117, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR

EARTHSYS 117: Earth Sciences of the Hawaiian Islands (EARTH 117, ESS 117)

Progression from volcanic processes through rock weathering and soil-ecosystem development to landscape evolution. The course starts with an investigation of volcanic processes, including the volcano structure, origin of magmas, physical-chemical factors of eruptions. Factors controlling rock weathering and soil development, including depth and nutrient levels impacting plant ecosystems, are explored next. Geomorphic processes of landscape evolution including erosion rates, tectonic/volcanic activity, and hillslope stability conclude the course. Methods for monitoring and predicting eruptions, defining spatial changes in landform, landform stability, soil production rates, and measuring biogeochemical processes are covered throughout the course. This course is restricted to students accepted into the Earth Systems of Hawaii Program.
Terms: Aut | Units: 4 | UG Reqs: WAY-SMA

EARTHSYS 122: Evolution of Marine Ecosystems (BIO 119, GEOLSCI 123, GEOLSCI 223B)

Life originally evolved in the ocean. When, why, and how did the major transitions occur in the history of marine life? What triggered the rapid evolution and diversification of animals in the Cambrian, after more than 3.5 billion years of Earth's history? What caused Earth's major mass extinction events? How do ancient extinction events compare to current threats to marine ecosystems? How has the evolution of primary producers impacted animals, and how has animal evolution impacted primary producers? In this course, we will review the latest evidence regarding these major questions in the history of marine ecosystems. We will develop familiarity with the most common groups of marine animal fossils. We will also conduct original analyses of paleontological data, developing skills both in the framing and testing of scientific hypotheses and in data analysis and presentation.
Last offered: Autumn 2017 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 124: Measurements in Earth Systems (ESS 212)

A classroom, laboratory, and field class designed to provide students familiarity with techniques and instrumentation used to track biological, chemical, and physical processes operating in earth systems, encompassing upland, aquatic, estuarine, and marine environments. Topics include gas and water flux measurement, nutrient and isotopic analysis, soil and water chemistry determination. Students will develop and test hypotheses, provide scientific evidence and analysis, culminating in a final presentation.
Last offered: Spring 2018 | UG Reqs: WAY-SMA

EARTHSYS 128: Evolution of Terrestrial Ecosystems (GEOLSCI 128, GEOLSCI 228)

The what, when, where, and how do we know it regarding life on land through time. Fossil plants, fungi, invertebrates, and vertebrates (yes, dinosaurs) are all covered, including how all of those components interact with each other and with changing climates, continental drift, atmospheric composition, and environmental perturbations like glaciation and mass extinction. The course involves both lecture and lab components. Graduate students registering at the 200-level are expected to write a term paper, but can opt out of some labs where appropriate.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

EARTHSYS 143: Molecular Geomicrobiology Laboratory (BIO 142, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Welander, P. (PI)

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and ESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Arrigo, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints