2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 2 of 2 results for: CME200

CME 200: Linear Algebra with Application to Engineering Computations (ME 300A)

Computer based solution of systems of algebraic equations obtained from engineering problems and eigen-system analysis, Gaussian elimination, effect of round-off error, operation counts, banded matrices arising from discretization of differential equations, ill-conditioned matrices, matrix theory, least square solution of unsolvable systems, solution of non-linear algebraic equations, eigenvalues and eigenvectors, similar matrices, unitary and Hermitian matrices, positive definiteness, Cayley-Hamilton theory and function of a matrix and iterative methods. Prerequisite: familiarity with computer programming, and MATH51.
Terms: Aut | Units: 3

CME 327: Numerical Methods for Stiff Problems

Focus is on analysis of numerical techniques for stiff ordinary differential equations, including those resulting from spatial discretization of partial differential equations. Topics include stiffness, convergence, stability, adaptive time stepping, implicit time-stepping methods (SDIRK, Rosenbrock), linear and nonlinear system solvers (Fixed Point, Newton, Multigrid, Krylov subspace methods) and preconditioning. Pre-requisites: CME200/ME300A or equivalent; or consent of instructor.
Last offered: Winter 2011
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints