2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 142 results for: EARTHSYS

EARTHSYS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (ESS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's "Changes in a California Estuary: A Profile of Elkhorn Slough". Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 46Q: Environmental Impact of Energy Systems: What are the Risks? (GEOLSCI 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Last offered: Winter 2016 | UG Reqs: WAY-AQR

EARTHSYS 58Q: Understanding Our Oceans: Scientific Toys, Tools, & Trips

In popular science magazines we read about deep ocean critters recently discovered or the latest threats coral reefs face. But what is it actually like to do science in the ocean-to research ocean life in the various ocean ecosystems? In this course, we will explore the latest advances in marine science-what technologies are allowing scientists to explore and investigate the ocean and what are we discovering. We will have 2 one-day fieldtrips (on Fridays) to marine research centers in Moss Landing, Monterey, and institutions in the Bay Area. This course will also expose students to what life as a marine biology/science graduate student is like.
Terms: Spr | Units: 3

EARTHSYS 90: Introduction to Geochemistry (GEOLSCI 90)

The chemistry of the solid earth and its atmosphere and oceans, emphasizing the processes that control the distribution of the elements in the earth over geological time and at present, and on the conceptual and analytical tools needed to explore these questions. The basics of geochemical thermodynamics and isotope geochemistry. The formation of the elements, crust, atmosphere and oceans, global geochemical cycles, and the interaction of geochemistry, biological evolution, and climate. Recommended: introductory chemistry.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Stebbins, J. (PI)

EARTHSYS 91: Earth Systems Writers Collective

Come join a community of environmental writers, publish your work, and get course credit at the same time! Are you currently working on an article, an op-ed, translating your class projects into publishable pieces or pursuing a new writing project? Are you interested in publishing your work in the quarterly Earth Systems newsletter and the annual Earth Systems magazine? In this weekly seminar, you will collaborate with others and get constructive feedback from a community of peer writers. You can enroll in the Earth Systems Writers Collective for 1 unit, or just join without signing up for course credit. May be repeated for credit.
Terms: Aut, Win | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: Polk, E. (PI)

EARTHSYS 95: Liberation Through Land: Organic Gardening and Racial Justice (AFRICAAM 95, CSRE 95)

Through field trips, practical work and readings, this course provides students with the tools to begin cultivating a relationship to land that focuses on direct engagement with sustainable gardening, from seed to harvest. The course will take place on the O'Donohue Family Stanford Educational Farm, where students will be given the opportunity to learn how to sow seeds, prepare garden beds, amend soils, build compost, and take care of plants. The history of forced farm labor in the U.S., from slavery to low-wage migrant labor, means that many people of color encounter agricultural spaces as sites of trauma and oppression. In this course we will explore the potential for revisiting a narrative of peaceful relation to land and crop that existed long before the trauma occurred, acknowledging the beautiful history of POC coexistence with land. Since this is a practical course, there will be a strong emphasis on participation. Application available at https://goo.gl/forms/cbYX3gSGdrHgHBJH3; deadline to apply is September 18, 2018, at midnight. The course is co-sponsored by the Institute for Diversity in the Arts (IDA) and the Earth Systems Program.
Terms: Aut | Units: 2

EARTHSYS 100: Environmental and Geological Field Studies in the Rocky Mountains (ESS 101)

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Terms: Aut | Units: 3

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 102: Fundamentals of Renewable Power (ENERGY 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended: Math 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci

EARTHSYS 103: Understanding Energy (CEE 107A, CEE 207A)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Field trip offerings differ each fall (see syllabus for updated list), but may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser¿s geothermal power plants, etc. Students choose two field trips from approximately 8 that are offered. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Open to all: pre-majors and majors, with any background! The course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nFor a course that covers all of this but goes less in-depth into the technical aspects of each energy resource, check out CEE 107S/207S Understanding Energy: Essentials, offered spring and summer (cannot take both for credit). Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S/207S or CEE 107E.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints