2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 10 results for: Phil150

CS 224U: Natural Language Understanding (LINGUIST 188, LINGUIST 288)

Project-oriented class focused on developing systems and algorithms for robust machine understanding of human language. Draws on theoretical concepts from linguistics, natural language processing, and machine learning. Topics include lexical semantics, distributed representations of meaning, relation extraction, semantic parsing, sentiment analysis, and dialogue agents, with special lectures on developing projects, presenting research results, and making connections with industry. Prerequisites: one of LINGUIST 180, CS 124, CS 224N, CS224S, or CS221; and logical/semantics such as LINGUIST 130A or B, CS 157, or PHIL150
Terms: Spr | Units: 3-4

LINGUIST 188: Natural Language Understanding (CS 224U, LINGUIST 288)

Project-oriented class focused on developing systems and algorithms for robust machine understanding of human language. Draws on theoretical concepts from linguistics, natural language processing, and machine learning. Topics include lexical semantics, distributed representations of meaning, relation extraction, semantic parsing, sentiment analysis, and dialogue agents, with special lectures on developing projects, presenting research results, and making connections with industry. Prerequisites: one of LINGUIST 180, CS 124, CS 224N, CS224S, or CS221; and logical/semantics such as LINGUIST 130A or B, CS 157, or PHIL150
Terms: Spr | Units: 3-4

LINGUIST 288: Natural Language Understanding (CS 224U, LINGUIST 188)

Project-oriented class focused on developing systems and algorithms for robust machine understanding of human language. Draws on theoretical concepts from linguistics, natural language processing, and machine learning. Topics include lexical semantics, distributed representations of meaning, relation extraction, semantic parsing, sentiment analysis, and dialogue agents, with special lectures on developing projects, presenting research results, and making connections with industry. Prerequisites: one of LINGUIST 180, CS 124, CS 224N, CS224S, or CS221; and logical/semantics such as LINGUIST 130A or B, CS 157, or PHIL150
Terms: Spr | Units: 3-4

MATH 162: Philosophy of Mathematics (PHIL 162, PHIL 262)

(Graduate students register for PHIL 262.) General survey of the philosophy of mathematics, focusing on epistemological issues. Includes survey of some basic concepts (proof, axiom, definition, number, set); mind-bending theorems about the limits of our current mathematical knowledge, such as Gödel's Incompleteness Theorems, and the independence of the continuum hypothesis from the current axioms of set theory; major philosophical accounts of mathematics: Logicism, Intuitionism, Hilbert's program, Quine's empiricism, Field's program, Structuralism; concluding with a discussion of Eugene Wigner's `The Unreasonable Effectiveness of Mathematics in the Natural Sciences'. Students won't be expected to prove theorems or complete mathematical exercises. However, includes some material of a technical nature. Prerequisite: PHIL150 or consent of instructor.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-Math

PHIL 23B: Truth and Paradox

Philosophical investigation of the concept of truth is often divided along two dimensions: investigation of the nature of truth and investigation of the semantics of truth claims. This tutorial will focus on the second kind of concern. One key impetus for a philosophical interest in the semantics and definability of truth is the challenge posed by semantic paradoxes such as the Liar paradox and Curry¿s paradox. Despite each having the initial appearance of a parlor trick, philosophers and logicians have come to appreciate the deep implications of these paradoxes. The main goal of this tutorial is to gain an appreciation of the philosophical issues -­ both with respect to formal and natural languages ­¿ which arise from consideration of the paradoxes. To this end, we will study some of the classic contributions to this area including Tarski¿s famous result that, in an important sense, the semantic paradoxes render truth indefinable, and Kripke¿s much later attempt to provide a definition of truth in the face of Tarski¿s limitative result. Further topics include the debate between paracomplete and paraconsistent solutions to the semantic paradoxes (notably defended by, respectively, Field and Priest); the relationship between deflationism about truth and the paradoxes; and the notion of ¿revenge problems¿ (roughly, the claim that any solution to the paradoxes can be used to construct a further paradox).nThe tutorial will avoid excessive technical discussions, but will aim to engender appreciation for some philosophical interesting technical points and will assume a logic background of PHIL150 level.
Last offered: Autumn 2012

PHIL 150: Mathematical Logic (PHIL 250)

An introduction to the concepts and techniques used in mathematical logic, focusing on propositional, modal, and predicate logic. Highlights connections with philosophy, mathematics, computer science, linguistics, and neighboring fields.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-Math, WAY-FR

PHIL 150E: Logic in Action: A New Introduction to Logic

A new introduction to logic, covering propositional, modal, and first-order logic, with special attention to major applications in describing information and information-driven action. Highlights connections with philosophy, mathematics, computer science, linguistics, and neighboring fields. Based on the open source course 'Logic in Action,' available online at http://www.logicinaction.org/.nFulfills the undergraduate philosophy logic requirement.
Last offered: Spring 2014 | UG Reqs: GER:DB-Math, WAY-FR

PHIL 150X: Mathematical Logic

Equivalent to the second half of 150. Students attend the first meeting of 150 and rejoin the class on October 30. Prerequisite: CS 103A or X, or PHIL 50.
Last offered: Autumn 2013

PHIL 162: Philosophy of Mathematics (MATH 162, PHIL 262)

(Graduate students register for PHIL 262.) General survey of the philosophy of mathematics, focusing on epistemological issues. Includes survey of some basic concepts (proof, axiom, definition, number, set); mind-bending theorems about the limits of our current mathematical knowledge, such as Gödel's Incompleteness Theorems, and the independence of the continuum hypothesis from the current axioms of set theory; major philosophical accounts of mathematics: Logicism, Intuitionism, Hilbert's program, Quine's empiricism, Field's program, Structuralism; concluding with a discussion of Eugene Wigner's `The Unreasonable Effectiveness of Mathematics in the Natural Sciences'. Students won't be expected to prove theorems or complete mathematical exercises. However, includes some material of a technical nature. Prerequisite: PHIL150 or consent of instructor.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-Math

PHIL 262: Philosophy of Mathematics (MATH 162, PHIL 162)

(Graduate students register for PHIL 262.) General survey of the philosophy of mathematics, focusing on epistemological issues. Includes survey of some basic concepts (proof, axiom, definition, number, set); mind-bending theorems about the limits of our current mathematical knowledge, such as Gödel's Incompleteness Theorems, and the independence of the continuum hypothesis from the current axioms of set theory; major philosophical accounts of mathematics: Logicism, Intuitionism, Hilbert's program, Quine's empiricism, Field's program, Structuralism; concluding with a discussion of Eugene Wigner's `The Unreasonable Effectiveness of Mathematics in the Natural Sciences'. Students won't be expected to prove theorems or complete mathematical exercises. However, includes some material of a technical nature. Prerequisite: PHIL150 or consent of instructor.
Terms: Aut | Units: 4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints