2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

121 - 130 of 337 results for: all courses

EARTHSYS 143: Molecular Geomicrobiology Laboratory (BIO 142, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM 121 or permission of the instructor.
Last offered: Spring 2022 | UG Reqs: WAY-SMA

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Arrigo, K. (PI)

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, ESS 152, ESS 252, OCEANS 152, OCEANS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Last offered: Spring 2023 | UG Reqs: WAY-AQR, WAY-SMA

EARTHSYS 155: Science of Soils (ESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 4-5 | UG Reqs: WAY-SMA, GER: DB-NatSci
Instructors: Fendorf, S. (PI)

EARTHSYS 158: Geomicrobiology (BIO 190, EARTHSYS 258, ESS 158, ESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Last offered: Winter 2023 | UG Reqs: WAY-SMA

EARTHSYS 170: Where the Wild Things Are: The Ecology and Ethics of Conserving Megafauna (BIO 185, DLCL 170, EALC 170, GLOBAL 170)

Under conditions of global environmental change and mass extinction, how will humanity share the planet with wildlife? This course invites undergraduate students to consider this question under the guidance of two biologists and a literary scholar. We will engage with a range of interdisciplinary scholarship on how humans seek to study, understand, exploit, protect, and empathize with charismatic megafauna. We ask how regional differences in culture, political economy, and ecology shape conservation efforts.
Terms: Aut, Win | Units: 3-5 | UG Reqs: WAY-ER, WAY-SMA

EARTHSYS 183: Adaptation (ESS 185)

Adaptation is the process by which organisms or societies become better suited to their environments. In this class, we will explore three distinct but related notions of adaptation. Biological adaptations arise through natural selection, while cultural adaptations arise from a variety of processes, some of which closely resemble natural selection. A newer notion of adaptation has emerged in the context of climate change where adaptation takes on a highly instrumental, and often planned, quality as a response to the negative impacts of environmental change. We will discuss each of these ideas, using their commonalities and subtle differences to develop a broader understanding of the dynamic interplay between people and their environments. Topics covered will include, among others: evolution, natural selection, levels of selection, formal models of cultural evolution, replicator dynamics, resilience, rationality and its limits, complexity, adaptive management.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 323: Stanford at Sea (BIO 182H, BIO 323H, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

EE 14N: Things about Stuff

Preference to freshmen. The stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves, for they elucidate broadly applicable scientific principles. Focus is on studying consumer devices; projects include building batteries, energy conversion devices and semiconductors from pocket change. Students may propose topics and projects of interest to them. The trajectory of the course is determined in large part by the students themselves.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Lee, T. (PI)

EE 21N: Making at the nanometer scale: A journey into microchips

Have you ever wondered what is inside your phone and your computer? What physical events happen in between the time you press the 'search' button and the information shows up on the screen? In this course, we start with the classic paper by Richard Feynman, "There's Plenty of Room at the Bottom," which laid down a challenge to the nanotechnologists. Today's microchips are nanotechnology in action. Transistors are nanometer scale. We will introduce students to the tools of nanotechnologists and the basic elements of nanoscale science and engineering such as nanotubes, nanowires, nanoparticles, and self-assembly. We will visit nanotechnology laboratories to consolidate our learning, go into the Stanford Nanofabrication Facility (SNF), and do a four-week project on nanofabrication. Hands-on laboratory work will be introduced (e.g., lithography, seeing things at the nanoscale using electron microscopes). We will learn how to build transistors from scratch and test them.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Wong, H. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints