2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
 Browseby subject... Scheduleview...

# 111 - 120 of 258 results for: all courses

## EE 65:Modern Physics for Engineers

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schrödinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell¿s demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-EngrAppSci, WAY-SMA

## EE 101A:Circuits I

Introduction to circuit modeling and analysis. Topics include creating the models of typical components in electronic circuits and simplifying non-linear models for restricted ranges of operation (small signal model); and using network theory to solve linear and non-linear circuits under static and dynamic operations. Prerequisite: ENGR40 or ENGR40M is useful but not strictly required.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

## EE 101B:Circuits II

Continuation of EE101A. Introduction to circuit design for modern electronic systems. Modeling and analysis of analog gain stages, frequency response, feedback. Filtering and analog¿to¿digital conversion. Fundamentals of circuit simulation. Prerequisites: EE101A, EE102A. Recommended: CME102.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

## EE 108:Digital System Design

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. Undergraduates must enroll for 4 units. *In Autumn, enrollment preference is given to EE majors. Formerly EE 108A.
Terms: Aut, Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

## EE 122A:Analog Circuits Laboratory

The course covers practical applications of mixed-signal circuits, including simple amplifiers, filters (passive, op-amp, switched-capacitor and digital-signal-processor-based), oscillators, power supplies, sensors and interface (input/output) circuits. Practical design skills, computer-aided design, and circuit fabrication and debugging are core topics. The design process is learned through proposing, designing, simulating, building, debugging, and demonstrating a substantial and novel team project. Radio frequency and largely digital projects not suitable for EE 122. Prerequisite: basic electronics laboratory experience with solid working knowledge of circuit analysis, Fourier and Laplace methods.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

## EE 122B:Introduction to Biomedical Electronics

EE122B is a laboratory course covering the design and realization of key components and architectures of modern biomedical electronics systems, their application in clinical and research measurements, and practical matters in their safe reduction to practice. Material in each topic area begins with an overview of the underlying physiology. Details are presented beginning with the molecular, cellular, organ-level origins of the biosignals, followed by the relevant transduction principles, nature of the signals (amplitude, frequency spectrum, etc.), and their processing and clinical use. Specific engineering topics include safety in biomedical instruments, fundamentals of analog/digital conversion and filtering techniques for biosignals, typical transducers (biopotential, electrochemical, temperature, pressure, acoustic, movement), applications (cardiovascular medicine, neurology, pulmonology, etc.) and interfacing circuits. Prerequisite: EE122A or equivalent hands-on mixed-signal design experience and solid working knowledge of EE122A topics (see course description).
Last offered: Spring 2016 | UG Reqs: WAY-AQR, WAY-SMA

## EE 124:Introduction to Neuroelectrical Engineering

Fundamental properties of electrical activity in neurons, technology for measuring and altering neural activity, and operating principles of modern neurological and neural prosthetic medical systems. Topics: action potential generation and propagation, neuro-MEMS and measurement systems, experimental design and statistical data analysis, information encoding and decoding, clinical diagnostic systems, and fully-implantable neural prosthetic systems design. Prerequisite: EE 101A and EE 102A.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

## EE 142:Engineering Electromagnetics

Introduction to electromagnetism and Maxwell's equations in static and dynamic regimes. Electrostatics and magnetostatics: Gauss's, Coulomb's, Faraday's, Ampere's, Biot-Savart's laws. Electric and magnetic potentials. Boundary conditions. Electric and magnetic field energy. Electrodynamics: Wave equation; Electromagnetic waves; Phasor form of Maxwell's equations.nSolution of the wave equation in 1D free space: Wavelength, wave-vector, forward and backward propagating plane waves.Poynting's theorem. Propagation in lossy media, skin depth. Reflection and refraction at planar boundaries, total internal reflection. Solutions of wave equation for various 1D-3D problems: Electromagnetic resonators, waveguides periodic media, transmission lines. Formerly EE 141. Pre-requisites: Phys 43 or EE 42, CME 100, CME 102 (recommended)
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

## EE 180:Digital Systems Architecture

The design of processor-based digital systems. Instruction sets, addressing modes, data types. Assembly language programming, low-level data structures, introduction to operating systems and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems and caches. Input/output, interrupts, buses and DMA. System design implementation alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and processor-based embedded systems. Formerly EE 108B. Prerequisite: CS107 (required) and EE108 (recommended but not required).
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

## ENERGY 101:Energy and the Environment (EARTHSYS 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Filter Results:
term offered
 Autumn Winter Spring Summer
updating results...
teaching presence
 in person remote: asynchronous remote: synchronous independent studies
updating results...
number of units
 1 unit 2 units 3 units 4 units 5 units >5 units
updating results...
time offered
 early morning (before 10am) morning (10am-12pm) lunchtime (12pm-2pm) afternoon (2pm-5pm) evening (after 5pm)
updating results...
days
 Monday Tuesday Wednesday Thursday Friday Saturday Sunday
updating results...
UG Requirements (GERs)
 WAY-A-II WAY-AQR WAY-CE WAY-ED WAY-ER WAY-FR WAY-SI WAY-SMA Language Writing 1 Writing 2 Writing SLE DB:Hum DB:Math DB:SocSci DB:EngrAppSci DB:NatSci EC:EthicReas EC:GlobalCom EC:AmerCul EC:Gender IHUM1 IHUM2 IHUM3
updating results...
component
 Lecture (LEC) Seminar (SEM) Discussion Section (DIS) Laboratory (LAB) Lab Section (LBS) Activity (ACT) Case Study (CAS) Colloquium (COL) Workshop (WKS) Independent Study (INS) Intro Dial, Sophomore (IDS) Intro Sem, Freshman (ISF) Intro Sem, Sophomore (ISS) Internship (ITR) Arts Intensive Program (API) Language (LNG) Clerkship (CLK) Practicum (PRA) Practicum (PRC) Research (RES) Sophomore College (SCS) Thesis/Dissertation (T/D)
updating results...
career