2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 87 results for: ENERGY

ENERGY 175: Well Test Analysis

Lectures, problems. Application of solutions of unsteady flow in porous media to transient pressure analysis of oil, gas, water, and geothermal wells. Pressure buildup analysis and drawdown. Design of well tests. Computer-aided interpretation.
Last offered: Autumn 2022 | Repeatable 2 times (up to 6 units total)

ENERGY 176: Electric System Planning with Emerging Generation Technologies (ENERGY 276)

The current electric system was built with a focus on large, continuous-duty baseload power generators fueled primarily by coal and nuclear generation. The electric grid was designed to meet local needs rather than regional or national ones, leading to a shortage of transmission capacity for integrating renewable energy sources like wind and solar. This shortage has created a backlog of interconnection applications for utility-scale wind, solar, and energy storage projects to reach wholesale power markets. The problem is compounded by the fact that transmission permitting is largely a state issue, with each state prioritizing its own interests. As a result, renewable developers face high network upgrade costs to connect wind, solar, and storage to the transmission system, creating a chicken-egg cycle that impedes the clean energy transition. This course aims to provide a comprehensive understanding of electric grid planning, focusing on the integration of emerging generation technologi more »
The current electric system was built with a focus on large, continuous-duty baseload power generators fueled primarily by coal and nuclear generation. The electric grid was designed to meet local needs rather than regional or national ones, leading to a shortage of transmission capacity for integrating renewable energy sources like wind and solar. This shortage has created a backlog of interconnection applications for utility-scale wind, solar, and energy storage projects to reach wholesale power markets. The problem is compounded by the fact that transmission permitting is largely a state issue, with each state prioritizing its own interests. As a result, renewable developers face high network upgrade costs to connect wind, solar, and storage to the transmission system, creating a chicken-egg cycle that impedes the clean energy transition. This course aims to provide a comprehensive understanding of electric grid planning, focusing on the integration of emerging generation technologies, including solar, wind, geothermal, and energy storage. The course covers a range of key issues related to electric grid planning, including policy, economics, environmental impacts, and the latest tools and techniques for electric grid planning. Students will learn how to evaluate and analyze the economic principles of electricity systems, conduct a cost-benefit analysis of emerging generation technologies, and identify financing options for these technologies. The course uses the project-based learning approach. Students will work on three different real-world problems: the US, Germany, and a local context. This hands-on approach will allow students to gain practical experience in designing and implementing electricity systems that integrate emerging-generation technologies. By the end of the course, students will have a deep understanding of the challenges and opportunities presented by the integration of emerging generations into the electric grid and will be equipped with the skills and knowledge needed to design and implement effective solutions. Open-source tools (written in Python) and datasets for the course projects will be provided. Prerequisites: Students should be familiar with basic energy systems and are encouraged to take the ENERGY 101, 102, and "Understand Energy" course ( CEE 107A/207A - ENERGY 107A/207A - EARTHSYS103) first; or permission of instructor.
Terms: Aut | Units: 3

ENERGY 177A: Engineering and Sustainable Development: Toolkit (ENERGY 277A)

The first of a two-quarter, project-based course sequence that address cultural, sociopolitical, organizational, technical, and ethical issues at the heart of implementing sustainable engineering projects in a developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs, local communities, and/or NGOs. While students must have the skills and aptitude necessary to make meaningful contributions to technical product designs, the course is open to all backgrounds and majors. The first quarter focuses on cultural awareness, ethical implications, user requirements, conceptual design, feasibility analysis, and implementation planning. Admission is by application. Students should plan to enroll in ENERGY 177B/277B Engineering & Sustainable Development: Implementation following successful completion of this course. Designated a Cardinal Course by the Haas Center for Public Service. To satisfy a Ways requirement, students must register for an undergraduate course number ( ENERGY 177A) and this course must be taken for at least 3 units.
Terms: Win | Units: 1-3 | UG Reqs: WAY-ER | Repeatable 2 times (up to 6 units total)

ENERGY 177B: Engineering and Sustainable Development: Implementation (ENERGY 277B)

The second of a two-quarter, project-based course sequence that address cultural, political, organizational, technical and business issues at the heart of implementing sustainable engineering projects in the developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs and/or NGOs. This quarter focuses on implementation, evaluation, and deployment of the designs developed in the winter quarter. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Spr | Units: 1-3 | Repeatable 2 times (up to 6 units total)

ENERGY 191: Optimization of Energy Systems (ENERGY 291)

Introductory mathematical programming and optimization using examples from energy industries. Emphasis on problem formulation and solving, secondary coverage of algorithms. Problem topics include optimization of energy investment, production, and transportation; uncertain and intermittent energy resources; energy storage; efficient energy production and conversion. Methods include linear and nonlinear optimization, as well as multi-objective and goal programming. Tools include Microsoft Excel and AMPL mathematical programming language. Prerequisites: MATH 20, 41, or MATH 51, or consent of instructor. Programming experience helpful (e.g,, CS 106A, CS 106B).
Terms: Spr | Units: 3-4

ENERGY 192: Undergraduate Teaching Experience

Leading field trips, preparing lecture notes, quizzes under supervision of the instructor. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 2 times (up to 6 units total)

ENERGY 193: Undergraduate Research Problems

Original and guided research problems with comprehensive report. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 4 times (up to 12 units total)

ENERGY 194: Special Topics in Energy and Mineral Fluids

May be repeated for credit.
Last offered: Summer 2022 | Repeatable 2 times (up to 6 units total)

ENERGY 199: Senior Project and Seminar in Energy Science and Engineering

Individual or group capstone project in Energy Science and Engineering. Emphasis is on report preparation. May be repeated for credit.
Terms: Spr | Units: 3 | Repeatable for credit

ENERGY 201A: Energy Systems Fundamentals

In this course we will provide an understanding of current and future energy systems under climate change and sustainability goals; understanding the fundamentals of engineering and energy conversion processes; model global exergy resources; modeling the grid and electricity markets; model environmental life-cycle, costs, and benefits of energy technologies and systems.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints