2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

81 - 90 of 337 results for: %

CHEM 25N: Science in the News

Preference to freshmen. Possible topics include: diseases such as avian flu, HIV, and malaria; environmental issues such as climate change, atmospheric pollution, and human population; energy sources in the future; evolution; stem cell research; nanotechnology; and drug development. Focus is on the scientific basis for these topics as a basis for intelligent discussion of societal and political implications. Sources include the popular media and scientific media for the nonspecialist, especially those available on the web.
Last offered: Autumn 2021 | UG Reqs: WAY-SMA

CHEM 29N: Chemistry in the Kitchen

This course examines the chemistry relevant to food and drink preparation, both in homes and in restaurants, which makes what we consume more pleasurable. Good cooking is more often considered an art rather than a science, but a small bit of understanding goes a long way to make the preparation and consumption of food and drink more enjoyable. The intention is to have demonstrations and tastings as a part of every class meeting. We will examine some rather familiar items in this course: eggs, dairy products, meats, breads, vegetables, pastries, and carbonated beverages. We shall playfully explore the chemistry that turns food into meals. A high-school chemistry background is assumed; bring to class a good appetite and a healthy curiosity.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: Zare, R. (PI)

CHEM 31A: Chemical Principles I

31A is the first course in a two-quarter sequence designed to provide a robust foundation in key chemical principles for students with a basic background in high school chemistry, who have already placed into Math 19 or higher. The course engages students in group problem-solving activities throughout the class periods to deepen their ability to analyze and solve chemical problems. Students will also participate in a weekly laboratory activity that will immediately apply and expand upon classroom content. Labs and write-ups provide practice developing conceptual models that can explain qualitatively and quantitatively a wide range of chemical phenomena. The course will introduce a common language of dimensional analysis, stoichiometry, and molecular naming that enables students to write chemical reactions, quantify reaction yield, and calculate empirical and molecular formulas. Stoichiometry will be immediately reinforced through a specific study of gases and their properties. Student more »
31A is the first course in a two-quarter sequence designed to provide a robust foundation in key chemical principles for students with a basic background in high school chemistry, who have already placed into Math 19 or higher. The course engages students in group problem-solving activities throughout the class periods to deepen their ability to analyze and solve chemical problems. Students will also participate in a weekly laboratory activity that will immediately apply and expand upon classroom content. Labs and write-ups provide practice developing conceptual models that can explain qualitatively and quantitatively a wide range of chemical phenomena. The course will introduce a common language of dimensional analysis, stoichiometry, and molecular naming that enables students to write chemical reactions, quantify reaction yield, and calculate empirical and molecular formulas. Stoichiometry will be immediately reinforced through a specific study of gases and their properties. Students will also build a fundamental understanding of atomic and molecular structure by identifying interactions among nuclei, electrons, atoms and molecules. Through both lab and in-class exploration, students will learn to explain how these interactions determine the structures and properties of pure substances and mixtures using various bonding models including Lewis Dot, VSEPR, and Molecular Orbital Theory. Students will identify and quantitate the types and amounts of energy changes that accompany these interactions, phase changes, and chemical reactions, as they prepare to explore chemical dynamics in greater depth in 31B. Special emphasis will be placed on applying content and skills to real world applications such as estimating the carbon efficiency of fossil fuels, understanding hydrogen bonding and other interactions critical to DNA, and calculating the pressure exerted on a deep-sea diver. Prerequisites: Math 18 and Chem11 or placement into Chem31A with Autumn General Chemistry Placement test. All students who are interested in taking general chemistry at Stanford must take the General Chemistry Placement Test before the Autumn quarter begins, regardless of chemistry background, to enroll.
Terms: Aut, Sum | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

CHEM 31B: Chemical Principles II

Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be p more »
Chem 31B is the second course in this two-quarter sequence, therefore only students who have completed Chem 31A may enroll in 31B. As with 31A, students will continue to engage in group problem-solving activities throughout class and participate in weekly laboratory activities. Labs and write-ups will allow students to more deeply explore and observe the different facets of chemical reactivity, including rates (kinetics), energetics (thermodynamics), and reversibility (equilibrium) of reactions. Through experimentation and discussion, students will determine what forces influence the rate of chemical reactions and learn how this can be applied to enzyme reactivity. Students will quantify chemical concentrations during a reaction, and predict the direction in which a reaction will shift in order to achieve equilibrium, including solubility equilibria. They will use these methods to estimate the possible levels of lead and other toxic metals in drinking water. Special emphasis will be placed on acid/base equilibria , allowing students to explore the role of buffers and antacids in our bodies, as well as ocean acidification and the impact on coral reefs. Students will then bring together concepts from both kinetics and equilibrium, in a deeper discussion of thermodynamics, to understand what ultimately influences the spontaneity of a reaction. Students will build a relationship between free energy, temperature, and equilibrium constants to be able to calculate the free energy of a reaction and understand how processes in our body are coupled to harness excess free energy to do useful work. Finally we will explore how we harness work from redox reactions, building both voltaic cells (i.e. batteries) and electrolytic cells in lab, and using reduction potentials to predict spontaneity and potential of a given reaction. We will look at the applications of redox chemistry in electric and fuel cell vehicles. The course's particular emphasis on understanding the driving forces of a reaction, especially the influence of thermodynamics versus kinetics, will prepare students for further study of predicting organic chemical reactivity and equilibria from structure in Chem 33. Prerequisite: Chem 31A.
Terms: Win, Sum | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

CHEM 31M: Chemical Principles: From Molecules to Solids

A one-quarter course for students who have taken chemistry previously. This course will introduce the basic chemical principles that dictate how and why reactions occur and the structure and properties of important molecules and extended solids that make up our world. As the Central Science, a knowledge of chemistry provides a deep understanding of concepts in fields ranging from materials, environmental science, and engineering to pharmacology and metabolism. Discussions of molecular structure will describe bonding models including Lewis structures, resonance, crystal-field theory, and molecular-orbital theory. We will reveal the chemistry of materials of different dimensionality, with an emphasis on bonding, and electronic structure of molecules and solids. We will also discuss the kinetics and thermodynamics that govern reactivity and dictate solubility and acid-base equilibria. A two-hour weekly laboratory section accompanies the course to introduce laboratory techniques and reiter more »
A one-quarter course for students who have taken chemistry previously. This course will introduce the basic chemical principles that dictate how and why reactions occur and the structure and properties of important molecules and extended solids that make up our world. As the Central Science, a knowledge of chemistry provides a deep understanding of concepts in fields ranging from materials, environmental science, and engineering to pharmacology and metabolism. Discussions of molecular structure will describe bonding models including Lewis structures, resonance, crystal-field theory, and molecular-orbital theory. We will reveal the chemistry of materials of different dimensionality, with an emphasis on bonding, and electronic structure of molecules and solids. We will also discuss the kinetics and thermodynamics that govern reactivity and dictate solubility and acid-base equilibria. A two-hour weekly laboratory section accompanies the course to introduce laboratory techniques and reiterate lecture concepts through hands-on activities. Specific discussions will include the structure, properties, and applications of molecules used in medicine, perovskites used in solar cells, and the dramatically different properties of materials with the same composition (for example: diamond, graphite, graphene). There will be three lectures and one two-hour laboratory session each week. The course will assume familiarity with stoichiometry, unit conversions, gas laws, and thermochemistry. All students who are interested in taking general chemistry at Stanford must take the Autumn 2021 General Chemistry Placement Test before the Autumn quarter begins, regardless of chemistry background. Same as: MATSCI 31
Terms: Aut | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

CHEM 33: Structure and Reactivity of Organic Molecules

An introduction to organic chemistry, the molecular foundation to understanding the life sciences, medicine, diagnostics, energy, environmental and materials sciences. Students will learn structural and bonding models of organic molecules that provide insights into reactivity. Combining these models with kinetic and thermodynamic analyses allows molecular transformations to be rationalized and even predicted. The course builds on this knowledge to begin to introduce organic reactions that can be applied to synthesis of novel molecules or materials that can positively impact society. A two-hour weekly lab section accompanies the course to introduce the techniques of separation and identification of organic compounds.
Terms: Win, Spr, Sum | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci

CHEM 131: Instrumental Analysis Principles and Practice

The core objectives of the course will focus upon introducing and providing hands-on practice with analytical separation, spectroscopic identification, and calibrated quantification with strong technical communication (for the Writing-in-the-Major requirement) emphasized throughout the course. Lectures will focus on theory, and laboratory activities will provide hands-on practice with the GC, LC, XPS, ICP, MS, and UV/Vis instruments. Data analysis will be emphasized throughout the course with Python being the primary tool for plotting and computations. Statistical measurements will be introduced to gauge the quality and validity of data. Lectures will be three times a week with a required four-hour laboratory section. The course should be completed prior to CHEM courses 174,176, or 184. Prerequisite: CHEM 33 or CHEM 100; and CS 106A.
Terms: Spr | Units: 5 | UG Reqs: WAY-SMA, GER: DB-NatSci, WAY-AQR

CHEMENG 20: Introduction to Chemical Engineering (ENGR 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

CHEMENG 31N: When Chemistry Meets Engineering

Preference to freshmen. Chemistry and engineering are subjects that are ubiquitous around us. But what happens when the two meet? Students will explore this question by diving into experimental problems that scientists and engineers have to face on a daily basis. Many processes that are taken for granted have been developed by understanding science at a very fundamental level and then applying it to large and important industrial processes. In this seminar, students will explore some of the basic concepts that are important to address chemical engineering problems through experimental work. Students will build materials for energy and environmental applications, understand how to separate mixtures into pure compounds, produce fuels, and will learn to look at the chemical properties of molecules that are part of daily life with a different eye.
Last offered: Winter 2023 | UG Reqs: WAY-SMA

CHEMENG 55: Foundational Biology for Engineers (ENGR 55)

Biology, physics, and chemistry are the substrates for the modern engineer. Whether you are interested in developing the next generation of medicines or would like the next material or catalyst you design to be inspired by solutions found in Nature, this course will deepen your knowledge of the foundational concepts in biology and enrich your engineering skills. We will introduce the physical principles that underlie the construction and function of living cells, the fundamental building block of life. Emphasis will be on systems, logic, quantitation, and mechanisms of the molecular processes utilized by all life on Earth. This course has no prerequisites, but prior completion of CHEM 31 or equivalent is highly recommended.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints