2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 54 results for: SYMSYS

SYMSYS 1: Minds and Machines (CS 24, LINGUIST 35, PHIL 99, PSYCH 35, SYMSYS 200)

(Formerly SYMSYS 100). An overview of the interdisciplinary study of cognition, information, communication, and language, with an emphasis on foundational issues: What are minds? What is computation? What are rationality and intelligence? Can we predict human behavior? Can computers be truly intelligent? How do people and technology interact, and how might they do so in the future? Lectures focus on how the methods of philosophy, mathematics, empirical research, and computational modeling are used to study minds and machines. Students must take this course before being approved to declare Symbolic Systems as a major. All students interested in studying Symbolic Systems are urged to take this course early in their student careers. The course material and presentation will be at an introductory level, without prerequisites. If you have any questions about the course, please email symsys1staff@gmail.com.
Terms: Aut, Win, Spr, Sum | Units: 4 | UG Reqs: WAY-FR, GER:DB-SocSci

SYMSYS 1P: A Practical Introduction to Symbolic Systems

An optional supplement to "Minds and Machines" ( SYMSYS 1), aimed at prospective majors in Symbolic Systems. Students will learn from the perspectives of faculty, alums, and advanced students about how to navigate the many paths available to a student: Sym Sys versus other majors, undergraduate core options, selecting courses and a concentration, research opportunities, internships, the honors program, graduate programs, careers, and life paths.
Last offered: Spring 2020

SYMSYS 2S: Introduction to Cognitive Science

Cognitive Science explores one of sciences final frontiers; the scientific study of the human mind. It is a broad interdisciplinary field that encompasses research from areas in neuroscience, psychology, philosophy, linguistics, and computer science and covers topics such as the nature of knowledge, thinking, remembering, vision, imagery, language, and consciousness. All of which we will touch upon in this survey course and is intended to give students a sampler of each discipline. This introductory class will expose students to some of the major methodologies, experimental design, neuroscientific fundamentals, and different cognitive disorders. More importantly, it will help students refine their interest to a specific field within cognitive science for future studies at their respective institutions. This 6-week summer course will require a sizable amount of required reading, not all of the readings is covered in the lectures. To extend and complement topics in this field, there is material presented in the lectures that is not in the readings.

SYMSYS 8: The Logic Group (Oxford)

If all dogs bark and Fido is a dog, it follows that Fido barks. If Clark Kent owns a car, it follows that Superman owns a car, since Clark Kent is Superman. Yet you might wonder why these statements follow from the said assumptions. Can this perhaps be explained in terms of the statements¿ meanings or their grammatical form? Will the explanation be the same in both cases, or do statements follow from assumptions for a variety of different reasons? Are there laws or principles which conclusively prove the statements from the assumptions? Can these laws be doubted, or are they self-evident?nThe Logic Group will tackle these and similar questions. You will gain a solid understanding of both propositional and predicate logic, including a deductive proof system. You will familiarise yourself with the central concepts of formal reasoning, including syntax and semantics, truth and interpretation, validity and soundness, and the concept of logical consequence. Although formal and technical, the course is accessible to all students, and all may benefit. Studying logic will improve your analytic and critical thinking skills and help you develop a more rigorous and precise writing style. Only open to students residing at Stanford House in Oxford (UK).
Terms: Aut | Units: 1-2

SYMSYS 20Q: The Data-Driven World

Recent technological advancements have enabled us to measure, record, and analyze more data than ever before. How can we effectively use this data to solve real-world problems and better understand the world around us? In this course, we will learn how computers can create a statistical model to learn from human-generated data and find patterns or make predictions. We will explore different algorithms that create a wide variety of models, each with their own pros and cons. Through R programming exercises integrated across the course, we will apply these models to many different kinds of data sourced from urban development, education, business, etc. and analyze our findings. Based on individual interest, students will choose to investigate a specific research question using domain-specific data as part of a quarter-long project. Lastly, we will discuss important ethical debates on the possible uses of data and their implications in today¿s world. By the end of the course, students will develop a technical coding skillset to investigate hypotheses in any given dataset, and be able to connect the insights they derive to larger issues of society, equity, and justice.

SYMSYS 104: Introduction to Race and Technology (ANTHRO 104D, CSRE 104)

How do ideas about race get encoded in the design of new technology? How have science and technology shaped our understanding of race and identity? Drawing on research in anthropology, history, media studies, STS, and beyond, we will consider how technology can reinforce and amplify racial inequality. From the 'scientific' origins of the concept of race in the 18th century to contemporary algorithms that attempt to detect a person's race from their image, we will explore how social ideas about race are both embedded in and transformed by technology. We will also highlight how communities of color have resisted the encroachment of harmful technologies and developed alternatives that promote racial justice. Topics covered will include: algorithmic bias, policing and borders, surveillance, disinformation, data colonialism, and labor issues like micro-tasking and data annotation. This introductory course has no prerequisites and welcomes students of all disciplines.
Last offered: Winter 2023

SYMSYS 112: Challenges for Language Systems (SYMSYS 212)

Parallel exploration of philosophical and computational approaches to modeling the construction of linguistic meaning. In philosophy of language: lexical sense extension, figurative speech, the semantics/pragmatics interface, contextualism debates. In CS: natural language understanding, from formal compositional models of knowledge representation to statistical and deep learning approaches. We will develop an appreciation of the complexities of language understanding and communication; this will inform discussion of the broader prospects for Artificial Intelligence. Special attention will be paid to epistemological questions on the nature of linguistic explanation, and the relationship between theory and practice. PREREQUISITES: PHIL80; some exposure to philosophy of language and/or computational language processing is recommended.
Last offered: Autumn 2017

SYMSYS 122: The Social & Economic Impact of Artificial Intelligence (CS 22A, INTLPOL 200)

Recent advances in Generative Artificial Intelligence place us at the threshold of a unique turning point in human history. For the first time, we face the prospect that we are not the only generally intelligent entities, and indeed that we may be less capable than our own creations. As this remarkable new technology continues to advance, we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous and unpredictable machines raises many complex and troubling questions. How will society respond as they displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems are free of bias and align with human ethical principles? Wha more »
Recent advances in Generative Artificial Intelligence place us at the threshold of a unique turning point in human history. For the first time, we face the prospect that we are not the only generally intelligent entities, and indeed that we may be less capable than our own creations. As this remarkable new technology continues to advance, we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous and unpredictable machines raises many complex and troubling questions. How will society respond as they displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems are free of bias and align with human ethical principles? What role will they play in our system of justice and the practice of law? How will they be used or abused in democratic societies and autocratic regimes? Will they alter the geopolitical balance of power, and change the nature of warfare? Are we merely a stepping-stone to a new form of non-biological life, or are we just getting better at building useful gadgets? The goal of this course is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of superintelligent machines. (Note: This course is pre-approved for credit at SLS and GSB. No programming or technical knowledge is required.)
Terms: Win | Units: 1
Instructors: Kaplan, J. (PI)

SYMSYS 132: Language and Thought (PSYCH 132)

Languages vary tremendously in how they allow us to express ourselves. In some languages, you have to say when an event happened (past, present, future, etc.), while in others it is obligatory to say how you know about the event (you saw it, you heard about it), or what genders its participants were. In addition, languages just feel different from one another - some feel poetic while others feel brutal. Some things just don't sound right in certain languages, and some translations are harder than others to pull off. But are these differences meaningful? Do differences across languages cause substantive changes in the cognition of their speakers? We'll read some of the burgeoning research literature on these questions and consider how they can be answered with new empirical tools.
Last offered: Summer 2023 | UG Reqs: WAY-SI

SYMSYS 151D: Ethical STEM: Race, Justice, and Embodied Practice (AFRICAAM 151, ARTSINST 151C, CSRE 151C, ETHICSOC 151C, STS 51D, TAPS 151D)

What role do science and technology play in the creation of a just society? How do we confront and redress the impact of racism and bias within the history, theory, and practice of these disciplines? This course invites students to grapple with the complex intersections between race, inequality, justice, and the STEM fields. We orient to these questions from an artistically-informed position, asking how we can rally the embodied practices of artists to address how we think, make, and respond to each other. Combining readings from the history of science, technology, and medicine, ethics and pedagogy, as well as the fine and performing arts, we will embark together on understanding how our STEM practices have emerged, how we participate today, and what we can imagine for them in the future. The course will involve workshops, field trips (as possible), and invited guests. All students, from any discipline, field, interest, and background, are welcome! This course does build upon the STS 51 series from 2020-21, though it is not a prerequisite for this course. Please contact the professor if you have any questions!
Terms: Win | Units: 4-5
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints