Print Settings
 

SYMSYS 1: Minds and Machines (LINGUIST 35, PHIL 99, PSYCH 35, SYMSYS 200)

(Formerly SYMSYS 100). An overview of the interdisciplinary study of cognition, information, communication, and language, with an emphasis on foundational issues: What are minds? What is computation? What are rationality and intelligence? Can we predict human behavior? Can computers be truly intelligent? How do people and technology interact, and how might they do so in the future? Lectures focus on how the methods of philosophy, mathematics, empirical research, and computational modeling are used to study minds and machines. Undergraduates considering a major in symbolic systems should take this course as early as possible in their program of study.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-FR | Grading: Letter or Credit/No Credit

SYMSYS 1P: A Practical Introduction to Symbolic Systems

An optional supplement to "Minds and Machines" (SYMSYS 1), aimed at prospective majors in Symbolic Systems. Students will learn from the perspectives of faculty, alums, and advanced students about how to navigate the many paths available to a student: Sym Sys versus other majors, undergraduate core options, selecting courses and a concentration, research opportunities, internships, the honors program, graduate programs, careers, and life paths.
Terms: Spr | Units: 2 | Grading: Letter or Credit/No Credit

SYMSYS 112: Challenges for Language Systems (SYMSYS 212)

Parallel exploration of philosophical and computational approaches to modeling the construction of linguistic meaning. In philosophy of language: lexical sense extension, figurative speech, the semantics/pragmatics interface, contextualism debates. In CS: natural language understanding, from formal compositional models of knowledge representation to statistical and deep learning approaches. We will develop an appreciation of the complexities of language understanding and communication; this will inform discussion of the broader prospects for Artificial Intelligence. Special attention will be paid to epistemological questions on the nature of linguistic explanation, and the relationship between theory and practice. PREREQUISITES: PHIL80; some exposure to philosophy of language and/or computational language processing is recommended.
Terms: not given this year | Units: 3-4 | Grading: Letter or Credit/No Credit

SYMSYS 115: Critique of Technology

What is the character of technology? How does technology reveal aspects of human nature and social practices? How does it shape human experience and values? We will survey the history of philosophy of technology -- from ancient and enlightenment ideas, to positivist and phenomenological conceptions -- to develop a deeper understanding of diverse technological worldviews. This will prepare us to consider contemporary questions about the "ethos" of technology. Specific questions will vary depending upon the interests of participants, but may include: ethical and existential challenges posed by artificial intelligence; responsible product design in the "attention economy"; industry regulation and policy issues for information privacy; and the like. PREREQUISITES: PHIL80
Terms: not given this year | Units: 3-4 | Grading: Letter or Credit/No Credit

SYMSYS 122: Artificial Intelligence: Philosophy, Ethics, & Impact

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of this course is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: not given this year | Units: 3-4 | UG Reqs: WAY-ER | Grading: Letter or Credit/No Credit

SYMSYS 167D: Philosophy of Neuroscience (PHIL 167D, PHIL 267D)

How can we explain the mind? With approaches ranging from computational models to cellular-level characterizations of neural responses to the characterization of behavior, neuroscience aims to explain how we see, think, decide, and even feel. While these approaches have been highly successful in answering some kinds of questions, they have resulted in surprisingly little progress in others. We'll look at the relationships between the neuroscientific enterprise, philosophical investigations of the nature of the mind, and our everyday experiences as creatures with minds. Prerequisite: PHIL 80.n(Not open to freshmen.)
Terms: Win | Units: 4 | Grading: Letter or Credit/No Credit
Instructors: ; Cao, R. (PI)

SYMSYS 190: Senior Honors Tutorial

Under the supervision of their faculty honors adviser, students work on their senior honors project. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

SYMSYS 191: Senior Honors Seminar

Recommended for seniors doing an honors project. Under the leadership of the Symbolic Systems program coordinator, students discuss, and present their honors project.
Terms: Aut | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Davies, T. (PI)

SYMSYS 200: Minds and Machines (LINGUIST 35, PHIL 99, PSYCH 35, SYMSYS 1)

(Formerly SYMSYS 100). An overview of the interdisciplinary study of cognition, information, communication, and language, with an emphasis on foundational issues: What are minds? What is computation? What are rationality and intelligence? Can we predict human behavior? Can computers be truly intelligent? How do people and technology interact, and how might they do so in the future? Lectures focus on how the methods of philosophy, mathematics, empirical research, and computational modeling are used to study minds and machines. Undergraduates considering a major in symbolic systems should take this course as early as possible in their program of study.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

SYMSYS 201: Digital Technology, Society, and Democracy

The impact of information and communication technologies on social and political life. Interdisciplinary. Classic and contemporary readings focusing on topics such as social networks, virtual versus face-to-face communication, the public sphere, voting technology, and collaborative production. Prerequisite: Completion of a course in psychology, communication, human-computer interaction, or a related discipline, or consent of the instructor.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Davies, T. (PI)

SYMSYS 203: Cognitive Science Perspectives on Humanity and Well-Being

In recent years, cognitive scientists have turned more attention to questions that have traditionally been investigated bynhistorians, political scientists, sociologists, and anthropologists, e.g. What are the sources of conflict and disagreement betweennpeople?, What drives or reduces violence and injustice?, and What brings about or is conducive to peace and justice? In this advancednsmall seminar, we will read and discuss works by psychologists, neuroscientists, philosophers, and others, which characterize thisngrowing research area among those who study minds, brains, and behavior.nRequired: Completion of a course in psychology beyond the level of Psych 1, or consent of the instructor.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

SYMSYS 207: Conceptual Issues in Cognitive Science

This seminar will cover a selection of foundational issues in cognitive science. Topics may include modularity, representation, connectionism, neuroscience and free will, neuroimaging, implants, sensory experience, the nature of information, and consciousness. Course is limited to 15 students. Prerequisite: Phil 80, or permission of the instructor.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Skokowski, P. (PI)

SYMSYS 208: Computer Machines and Intelligence

It has become common for us to see in the media news about computer winning a masters in chess, or answering questions on the Jeopardy TV show, or the impact of AI on health, transportation, education, in the labor market and even as an existential threat to mankind. This interest in AI gives rise questions such as: Is it possible for a computer to think? What is thought? Are we computers? Could machines feel emotions or be conscious? Curiously, there is no single, universally accepted definition of Artificial Intelligence. However in view of the rapid dissemination of AI these questions are important not only for experts, but also for all other members of society. This course is intended for students from different majors Interested in learn how the concept of intelligent machine is understood by the researchers in AI. We will study the evolution of AI research, its different approaches, with focus on the tests developed to verify if a machine is intelligent or not. In addition, we will examine the philosophical problems associated with the concept of intelligent machine. The topics covered will include: Turing test, symbolic AI, connectionist AI, sub- symbolic Ai, Strong AI and Weak AI, Ai singularity, unconventional computing, rationality, intentionality, representation, machine learning, and the possibility of conscious machines.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

SYMSYS 212: Challenges for Language Systems (SYMSYS 112)

Parallel exploration of philosophical and computational approaches to modeling the construction of linguistic meaning. In philosophy of language: lexical sense extension, figurative speech, the semantics/pragmatics interface, contextualism debates. In CS: natural language understanding, from formal compositional models of knowledge representation to statistical and deep learning approaches. We will develop an appreciation of the complexities of language understanding and communication; this will inform discussion of the broader prospects for Artificial Intelligence. Special attention will be paid to epistemological questions on the nature of linguistic explanation, and the relationship between theory and practice. PREREQUISITES: PHIL80; some exposure to philosophy of language and/or computational language processing is recommended.
Terms: not given this year | Units: 3-4 | Grading: Letter or Credit/No Credit

SYMSYS 245: Cognition in Interaction Design

Note: Same course as 145 which is no longer active. Interactive systems from the standpoint of human cognition. Topics include skill acquisition, complex learning, reasoning, language, perception, methods in usability testing, special computational techniques such as intelligent and adaptive interfaces, and design for people with cognitive disabilities. Students conduct analyses of real world problems of their own choosing and redesign/analyze a project of an interactive system. Limited enrollment seminar taught in two sections of approximately ten students each. Admission to the course is by application to the instructor, with preference given to Symbolic Systems students of advanced standing. Recommended: a course in cognitive psychology or cognitive anthropology.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Shrager, J. (PI)

SYMSYS 255: Building Digital History: Informatics of Social Movements and Protest

A participatory course focused on the online representation of oral and archival history research. This year's thematic focus is the design and evaluation of history websites focused on social movements and protest. We will survey the field of digital history and its application to social movement research and teaching. The course will utilize materials developed in the 2014 version of the course, which focused on the history of student activism at Stanford. Class will apply lessons from digital history practice and theory to the design of an online repository and community for the collaborative representation and discussion of social movement history at Stanford, and to the further development of source material in a future version of the class. Topics will include participatory design, studies of historical learning, archiving issues, data integrity, and fair representation of different viewpoints, among others.
Terms: not given this year | Units: 3-5 | Grading: Letter or Credit/No Credit

SYMSYS 255A: Building Digital History: Social Movements and Protest at Stanford

Lectures-only version of Symsys 255.
Terms: not given this year | Units: 1 | Grading: Satisfactory/No Credit

SYMSYS 271: Group Democracy

This seminar will explore theoretical, empirical, and practical approaches to groups that come together around a common purpose or interest. Emphasis is on democratically structured, non-hierarchical and non-institutional decision making, e.g. by grassroots activists, student, or neighborhood organizations. Parliamentary, consensus, and informal procedures. How do groups form? How do they deliberate and make decision? What are the principles underlying different models for group process, and how well do different procedures work in practice? How do culture and identity affect the working of a group? And how are social technologies used? Readings from different disciplines and perspectives. Course is limited to 20 students. Prerequisite: A course in social psychology, decision making or group sociology. This course must be taken for a minimum of 3 units and a letter grade to be eligible for Ways credit
Terms: not given this year | Units: 2-4 | UG Reqs: WAY-SI | Grading: Letter or Credit/No Credit

SYMSYS 275: Collective Behavior and Distributed Intelligence (BIO 175)

This course will explore possibilities for student research projects based on presentations of faculty research. We will cover a broad range of topics within the general area of collective behavior, both natural and artificial. Students will build on faculty presentations to develop proposals for future projects.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

SYMSYS 280: Symbolic Systems Research Seminar

A mixture of public lectures of interest to Symbolic Systems students (the Symbolic Systems Forum) and student-led meetings to discuss research in Symbolic Systems. Can be repeated for credit. Open to both undergraduates and Master's students.nFirst meeting is the second Monday of the quarter
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Davies, T. (PI)

SYMSYS 291: Master's Program Seminar

Enrollment limited to students in the Symbolic Systems M.S. degree program. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Davies, T. (PI)

SYMSYS 296: Independent Study

Independent work under the supervision of a faculty member. Can be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

SYMSYS 297: Teaching in Symbolic Systems

Leading sections, grading, and/or other duties of teaching or helping to teach a course in Symbolic Systems. Sign up with the instructor supervising the course in which you are teaching or assisting.
Terms: Aut | Units: 1-5 | Repeatable for credit | Grading: Satisfactory/No Credit

SYMSYS 298: Peer Advising in Symbolic Systems: Practicum

Optional for students selected as Undergraduate Advising Fellows in the Symbolic Systems Program. AFs work with program administrators to assist undergraduates in the Symbolic Systems major or minor, in course selection, degree planning, and relating the curriculum to a career or life plan, through advising and events. Meeting with all AFs for an hour once per week under the direction of the Associate Director. Requires a short reflective paper at the end of the quarter on what the AF has learned about advising students in the program. Repeatable for credit. May not be taken by students who receive monetary compensation for their work as an AF.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Davies, T. (PI)

SYMSYS 299: Curricular Practical Training

Students obtain employment in a relevant research or industrial activity to enhance their professional experience consistent with their degree programs. Meets the requirements for curricular practical training for students on F-1 visas. Students submit a concise report detailing work activities, problems worked on, and key results. May be repeated for credit. Prerequisite: qualified offer of employment and consent of advisor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
© Stanford University | Terms of Use | Copyright Complaints