Print Settings
 

STATS 216V: Introduction to Statistical Learning

Overview of supervised learning, with a focus on regression and classification methods. Syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; Some unsupervised learning: principal components and clustering (k-means and hierarchical). Computing is done in R, through tutorial sessions and homework assignments. This math-light course is offered remotely only via video segments (MOOC style). TAs will host remote weekly office hours using an online platform such as Zoom. There are four homework assignments, a midterm, and a final exam, all of which are administered remotely. Prereqs: Introductory courses in statistics or probability (e.g., Stats 60 or Stats 101), linear algebra (e.g., Math 51), and computer programming (e.g., CS 105).
Terms: Sum | Units: 3 | Grading: Letter or Credit/No Credit
© Stanford University | Terms of Use | Copyright Complaints