Print Settings
 

OIT 245: Optimization and Simulation Modeling

This course provides basic skills in quantitative modeling. The objective is to familiarize students with the main steps in an analytical approach to business decision making: constructing an abstract model for a relevant business problem, formulating it in a spreadsheet environment such as Microsoft Excel, and using the tools of optimization, Monte Carlo simulation and sensitivity analysis to generate and interpret recommendations. The class will be taught in a lab style, with short in-class exercises done in small teams, focusing on a variety of applications drawn from online advertising, healthcare, finance, supply chain management, revenue and yield optimization.
Units: 3 | Grading: GSB Letter Graded

OIT 247: Optimization and Simulation Modeling - Accelerated

The course is aimed at students who already have a background or demonstrated aptitude for quantitative analysis, and thus are comfortable with a more rapid coverage of the topics, in more depth and breadth, than in OIT 245.
Units: 3 | Grading: GSB Letter Graded
© Stanford University | Terms of Use | Copyright Complaints