Print Settings
 

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

MATSCI 143: Materials Structure and Characterization

Students will study the theory and application of characterization techniques used to examine the structure of materials at the nanoscale. Students will learn to classify the structure of materials such as semiconductors, ceramics, metals, and nanotubes according to the principles of crystallography. Methods used widely in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: E-50 or equivalent introductory materials science course. (Formerly 153)
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win, Sum | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158, CHEMENG 160)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 172: X-Ray Diffraction Laboratory (MATSCI 162, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

MATSCI 194: Thermodynamics and Phase Equilibria

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win, Sum | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

MATSCI 195: Waves and Diffraction in Solids (MATSCI 205, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: MATSCI 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

MATSCI 196: Defects in Crystalline Solids (MATSCI 206)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: MATSCI 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 204: Thermodynamics and Phase Equilibria

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids.Offered online for grad students in summer quarter, while an in-person course for grads and undergrads will be available in winter quarter 2019.
Terms: Win, Sum | Units: 3 | Grading: Letter (ABCD/NP)

MATSCI 205: Waves and Diffraction in Solids (MATSCI 195, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: MATSCI 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)

MATSCI 206: Defects in Crystalline Solids (MATSCI 196)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: MATSCI 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

MATSCI 230: Materials Science Colloquium

May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 256: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions.
Terms: Win, Sum | Units: 3-4 | Grading: Letter or Credit/No Credit

MATSCI 299: Practical Training

Educational opportunities in high-technology research and development labs in industry. Qualified graduate students engage in internship work and integrate that work into their academic program. Following the internship, students complete a research report outlining their work activity, problems investigated, key results, and any follow-on projects they expect to perform. Student is responsible for arranging own employment. See department student services manager before enrolling.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 301: Engineering Energy Policy Change

Public policy and economic decisions profoundly affect all aspects of the energy ecosystem, including its supply, distribution, storage and utilization. These decisions can also influence the pace and focus of innovation of new technologies, including through government-funded research and development programs or regulatory efforts. This course will equip graduate students, who have strong science and engineering backgrounds, with a basic ability to understand and shape the ideation and implementation of sound energy and, related economic, policy. Building on case studies of both aspirational and reactive U.S. energy policy-making, students will design their own policy proposals for new, ambitious and achievable moonshot goals that advance a sustainable and prosperous future. In particular, students will choose a moonshot goal designed to reduce U.S. (and/or global) transportation-related emissions. These proposals may focus on specific mobility technologies (e.g., new zero-GHG liquid fuels), lead to transformation of mobility systems (e.g., integration of wide-scale automation into the transportation sector), or reduce emissions in another way altogether (e.g., moving manufacturing closer to consumption through 3-d printing). Students will also be introduced to gunshot scenarios, moments of energy crisis that require robust response and can create openings for dramatic change to the energy ecosystem.
Terms: Win | Units: 2 | Grading: Letter or Credit/No Credit

MATSCI 321: Transmission Electron Microscopy

Image formation and interpretation. The contrast phenomena associated with perfect and imperfect crystals from a physical point of view and from a formal treatment of electron diffraction theory. The importance of electron diffraction to systematic analysis and recent imaging developments. Recommended: 193/203, 195/205, or equivalent.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 323: Thin Film and Interface Microanalysis

The science and technology of microanalytical techniques will be discussed. We consider ways to characterize the structural, compositional, morphological, electronic, optical, mechanical, and magnetic properties of surfaces and interfaces. We will talk about different types of surface analytical techniques that rely on the use of electrons, photons, ions, and sharp tips to learn about different aspects about surfaces. We also discuss strategies on how to combine such techniques to gain a more complete and quantitative picture of a surface. We will also describe the inner workings and design of the hardware involved in analyzing surfaces.n*Prerequisite: some prior exposure to atomic and electronic structure of solids
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 331: Atom-based computational methods for materials

Introduction to atom-based computational methods for materials with emphasis on quantum methods. Topics include density functional theory, tight-binding and empirical approaches. Computation of optical, electronic, phonon properties. Bulk materials, interfaces, nanostructures. Molecular dynamics. Prerequisites - undergraduate quantum mechanics.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 358: Fracture and Fatigue of Materials and Thin Film Structures

Linear-elastic and elastic-plastic fracture mechanics from a materials science perspective, emphasizing microstructure and the micromechanisms of fracture. Plane strain fracture toughness and resistance curve behavior. Mechanisms of failure associated with cohesion and adhesion in bulk materials, composites, and thin film structures. Fracture mechanics approaches to toughening and subcritical crack-growth processes, with examples and applications involving cyclic fatigue and environmentally assisted subcritical crack growth. Prerequisite: 151/251, 198/208, or equivalent. SCPD offering.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 382: Biochips and Medical Imaging (EE 225, SBIO 225)

The course covers state-of-the-art and emerging bio-sensors, bio-chips, imaging modalities, and nano-therapies which will be studied in the context of human physiology including the nervous system, circulatory system and immune system. Medical diagnostics will be divided into bio-chips (in-vitro diagnostics) and medical and molecular imaging (in-vivo imaging). In-depth discussion on cancer and cardiovascular diseases and the role of diagnostics and nano-therapies.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

MATSCI 400: Participation in Materials Science Teaching

May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit
© Stanford University | Terms of Use | Copyright Complaints