MATH 19:
Calculus
Introduction to differential calculus of functions of one variable. Review of elementary functions (including exponentials and logarithms), limits, rates of change, the derivative and its properties, applications of the derivative. Prerequisites: trigonometry, advanced algebra, and analysis of elementary functions (including exponentials and logarithms). You must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Sum

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 20:
Calculus
The definite integral, Riemann sums, antiderivatives, the Fundamental Theorem of Calculus, and the Mean Value Theorem for integrals. Integration by substitution and by parts. Area between curves, and volume by slices, washers, and shells. Initialvalue problems, exponential and logistic models, direction fields, and parametric curves. Prerequisite: Math 19 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 21:
Calculus
Review of limit rules. Sequences, functions, limits at infinity, and comparison of growth of functions. Review of integration rules, integrating rational functions, and improper integrals. Infinite series, special examples, convergence and divergence tests (limit comparison and alternating series tests). Power series and interval of convergence, Taylor polynomials, Taylor series and applications. Prerequisite: Math 20 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr

Units: 4

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 21A:
Calculus, ACE
Students attend MATH 21 lectures with different recitation sessions: two hours per week instead of one, emphasizing engineering applications. Prerequisite: application; see https://web.stanford.edu/dept/soe/osa/ace.fb
Terms: Aut, Win, Spr

Units: 5

Grading: Letter or Credit/No Credit
MATH 51:
Linear Algebra, Multivariable Calculus, and Modern Applications
This course provides unified coverage of linear algebra and multivariable differential calculus. It discusses applications connecting the material to many quantitative fields. Linear algebra in large dimensions underlies the scientific, datadriven, and computational tasks of the 21st century. The linear algebra portion of the course includes orthogonality, linear independence, matrix algebra, and eigenvalues as well as ubiquitious applications: least squares, linear regression, Markov chains (relevant to population dynamics, molecular chemistry, and PageRank), singular value decomposition (essential in image compression, topic modeling, and dataintensive work in the natural sciences), and more. The multivariable calculus material includes unconstrained optimization via gradients and Hessians (used for energy minimization in physics and chemistry), constrained optimization (via Lagrange multipliers, crucial in economics), gradient descent and the multivariable Chain Rule (which underlie many machine learning algorithms, such as backpropagation), and Newton's method (a crucial part of how GPS works). The course emphasizes computations alongside an intuitive understanding of key ideas, making students wellprepared for further study of mathematics and its applications to other fields. The widespread use of computers makes it more important, not less, for users of math to understand concepts: in all scientific fields, novel users of quantitative tools in the future will be those who understand ideas and how they fit with applications and examples. This is the only course at Stanford whose syllabus includes nearly all the math background for CS 229, which is why CS 229 and CS 230 specifically recommend it (or other courses resting on it). For frequently asked questions about the differences between Math 51 and CME 100, see the FAQ on the placement page on the math department website. Prerequisite: 21, 42, or the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr, Sum

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 51A:
Linear Algebra, Multivariable Calculus, and Modern Applications, ACE
Students attend MATH 51 lectures with different recitation sessions: four hours per week instead of two, emphasizing engineering applications. Prerequisite: application; see https://engineering.stanford.edu/studentsacademics/engineeringdiversityprograms/additionalcalculusengineersace
Terms: Aut, Win, Spr

Units: 6

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 52:
Integral Calculus of Several Variables
Iterated integrals, line and surface integrals, vector analysis with applications to vector potentials and conservative vector fields, physical interpretations. Divergence theorem and the theorems of Green, Gauss, and Stokes. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 53:
Ordinary Differential Equations with Linear Algebra
Ordinary differential equations and initial value problems, systems of linear differential equations with constant coefficients, applications of secondorder equations to oscillations, matrix exponentials, Laplace transforms, stability of nonlinear systems and phase plane analysis, numerical methods. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr, Sum

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 61CM:
Modern Mathematics: Continuous Methods
This is the first part of a theoretical (i.e., proofbased) sequence in multivariable calculus and linear algebra, providing a unified treatment of these topics. Covers general vector spaces, linear maps and duality, eigenvalues, inner product spaces, spectral theorem, metric spaces, differentiation in Euclidean space, submanifolds of Euclidean space as local graphs, integration on Euclidean space, and many examples. The linear algebra content is covered jointly with Math 61DM. Students should know 1variable calculus and have an interest in a theoretical approach to the subject. Prerequisite: score of 5 on the BClevel Advanced Placement calculus exam, or consent of the instructor.
Terms: Aut

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 61DM:
Modern Mathematics: Discrete Methods
This is the first part of a theoretical (i.e., proofbased) sequence in discrete mathematics and linear algebra. Covers general vector spaces, linear maps and duality, eigenvalues, inner product spaces, spectral theorem, counting techniques, and linear algebra methods in discrete mathematics including spectral graph theory and dimension arguments. The linear algebra content is covered jointly with Math 61CM. Students should have an interest in a theoretical approach to the subject. Prerequisite: score of 5 on the BClevel Advanced Placement calculus exam, or consent of the instructor.nnThis sequence is not appropriate for students planning to major in natural sciences, economics, or engineering, but is suitable for majors in any other field (such as MCS ("data science"), computer science, and mathematics).
Terms: Aut

Units: 5

UG Reqs: WAYFR

Grading: Letter or Credit/No Credit
MATH 83N:
Proofs and Modern Mathematics
How do mathematicians think? Why are the mathematical facts learned in school true? In this course students will explore higherlevel mathematical thinking and will gain familiarity with a crucial aspect of mathematics: achieving certainty via mathematical proofs, a creative activity of figuring out what should be true and why. This course is ideal for students who would like to learn about the reasoning underlying mathematical results, but at a pace and level of abstraction not as intense as Math 61CM/DM, as a consequence benefiting from additional opportunity to explore the reasoning. Familiarity with onevariable calculus is strongly recommended at least at the AB level of AP Calculus since a significant part of the seminar develops develops some of the main results in that material systematically from a small list of axioms. We also address linear algebra from the viewpoint of a mathematician, illuminating notions such as fields and abstract vector spaces. This seminar may be paired with Math 51; though that course is not a pre or corequisite.
Terms: Aut

Units: 3

UG Reqs: WAYFR

Grading: Letter or Credit/No Credit
MATH 104:
Applied Matrix Theory
Linear algebra for applications in science and engineering: orthogonality, projections, spectral theory for symmetric matrices, the singular value decomposition, the QR decomposition, leastsquares, the condition number of a matrix, algorithms for solving linear systems. MATH 113 offers a more theoretical treatment of linear algebra. MATH 104 and EE 103/CME 103 cover complementary topics in applied linear algebra. The focus of MATH 104 is on algorithms and concepts; the focus of EE 103 is on a few linear algebra concepts, and many applications. Prerequisites: MATH 51 and programming experience on par with CS 106.
Terms: Aut, Win, Spr, Sum

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 107:
Graph Theory
An introductory course in graph theory establishing fundamental concepts and results in variety of topics. Topics include: basic notions, connectivity, cycles, matchings, planar graphs, graph coloring, matrixtree theorem, conditions for hamiltonicity, Kuratowski's theorem, Ramsey and Turantype theorem. Prerequisites: 51 or equivalent and some familiarity with proofs is required.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 113:
Linear Algebra and Matrix Theory
Algebraic properties of matrices and their interpretation in geometric terms. The relationship between the algebraic and geometric points of view and matters fundamental to the study and solution of linear equations. Topics: linear equations, vector spaces, linear dependence, bases and coordinate systems; linear transformations and matrices; similarity; eigenvectors and eigenvalues; diagonalization. (Math 104 offers a more applicationoriented treatment.)
Terms: Aut, Win, Spr, Sum

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 115:
Functions of a Real Variable
The development of real analysis in Euclidean space: sequences and series, limits, continuous functions, derivatives, integrals. Basic point set topology. Honors math majors and students who intend to do graduate work in mathematics should take 171. Prerequisite: 21.
Terms: Aut, Spr, Sum

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 116:
Complex Analysis
Analytic functions, Cauchy integral formula, power series and Laurent series, calculus of residues and applications, conformal mapping, analytic continuation, introduction to Riemann surfaces, Fourier series and integrals. (Math 106 offers a less theoretical treatment.) Prerequisites: 52, and 115 or 171.
Terms: Aut

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 120:
Groups and Rings
Recommended for Mathematics majors and required of honors Mathematics majors. Similar to 109 but altered content and more theoretical orientation. Groups acting on sets, examples of finite groups, Sylow theorems, solvable and simple groups. Fields, rings, and ideals; polynomial rings over a field; PID and nonPID. Unique factorization domains. WIM.
Terms: Aut, Spr

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 147:
Differential Topology
Smooth manifolds, transversality, Sards' theorem, embeddings, degree of a map, BorsukUlam theorem, Hopf degree theorem, Jordan curve theorem. Prerequisite: 115 or 171.
Terms: Aut

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 171:
Fundamental Concepts of Analysis
Recommended for Mathematics majors and required of honors Mathematics majors. Similar to 115 but altered content and more theoretical orientation. Properties of Riemann integrals, continuous functions and convergence in metric spaces; compact metric spaces, basic point set topology. Prerequisite: 61CM or 61DM or 115 or consent of the instructor. WIM
Terms: Aut, Spr

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 193:
Polya Problem Solving Seminar
Topics in mathematics and problem solving strategies with an eye towards the Putnam Competition. Topics may include parity, the pigeonhole principle, number theory, recurrence, generating functions, and probability. Students present solutions to the class. Open to anyone with an interest in mathematics.
Terms: Aut

Units: 1

Repeatable for credit

Grading: Satisfactory/No Credit
MATH 197:
Senior Honors Thesis
Honors math major working on senior honors thesis under an approved advisor carries out research and reading. Satisfactory written account of progress achieved during term must be submitted to advisor before term ends. May be repeated 3 times for a max of 9 units. Contact department student services specialist to enroll.
Terms: Aut, Win, Spr, Sum

Units: 16

Repeatable for credit

Grading: Letter (ABCD/NP)
Instructors: ;
Conrad, B. (PI);
Cook, N. (PI);
Dembo, A. (PI);
Eliashberg, Y. (PI);
Fox, J. (PI);
Kachru, S. (PI);
Luk, J. (PI);
Soundararajan, K. (PI);
Taylor, R. (PI);
Vasy, A. (PI);
Vondrak, J. (PI)
MATH 199:
Reading Topics
For Math majors only. Undergraduates pursue a reading program under the direction of a Math faculty member; topics limited to those not in regular department course offerings. Credit can fulfill the elective requirement for Math majors. Departmental approval required; please contact the Student Services Specialist for the enrollment proposal form at least 2 weeks before the final study list deadline. May be repeated for credit. Enrollment beyond a third section requires additional approval.
Terms: Aut, Win, Spr, Sum

Units: 13

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 205A:
Real Analysis
Basic measure theory and the theory of Lebesgue integration. Prerequisite: 171 or equivalent.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 210A:
Modern Algebra I
Basic commutative ring and module theory, tensor algebra, homological constructions, linear and multilinear algebra, canonical forms and Jordan decomposition. Prerequisite: 121 and 122 or equivalent.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 215A:
Algebraic Topology
Topics: fundamental group and covering spaces, basics of homotopy theory, homology and cohomology (simplicial, singular, cellular), products, introduction to topological manifolds, orientations, Poincare duality. Prerequisites: 113, 120, and 171.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 216A:
Introduction to Algebraic Geometry
Algebraic varieties, and introduction to schemes, morphisms, sheaves, and the functorial viewpoint. May be repeated for credit. Prerequisites: 210AB or equivalent.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 220:
Partial Differential Equations of Applied Mathematics (CME 303)
Firstorder partial differential equations; method of characteristics; weak solutions; elliptic, parabolic, and hyperbolic equations; Fourier transform; Fourier series; and eigenvalue problems. Prerequisite: Basic coursework in multivariable calculus and ordinary differential equations, and some prior experience with a proofbased treatment of the material as in Math 171 or Math 61CM (formerly Math 51H).
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 230A:
Theory of Probability I (STATS 310A)
Mathematical tools: sigma algebras, measure theory, connections between coin tossing and Lebesgue measure, basic convergence theorems. Probability: independence, BorelCantelli lemmas, almost sure and Lp convergence, weak and strong laws of large numbers. Large deviations. Weak convergence; central limit theorems; Poisson convergence; Stein's method. Prerequisites: STATS 116, MATH 171.
Terms: Aut

Units: 3

Grading: Letter or Credit/No Credit
MATH 233A:
Topics in Combinatorics
A topics course in combinatorics and related areas. The topic will be announced by the instructor.
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 245A:
Topics in Algebraic Geometry
Topics of contemporary interest in algebraic geometry. May be repeated for credit.
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 257A:
Symplectic Geometry and Topology
Linear symplectic geometry and linear Hamiltonian systems. Symplectic manifolds and their Lagrangian submanifolds, local properties. Symplectic geometry and mechanics. Contact geometry and contact manifolds. Relations between symplectic and contact manifolds. Hamiltonian systems with symmetries. Momentum map and its properties. May be repeated for credit.
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 263C:
Topics in Representation Theory
Conformal Field Theory is a branch of physics with origins in solvable lattice models and string theory. But the mathematics that it has inspired has many applications in pure mathematics.nWe will give an introduction to this theory with related representation theories of the Virasoro and affine Lie algebras, and vertex operators.nnPrerequisites: we will not assume any particular knowledge from physics, but some knowledge of Lie algebras will be helpful.nnnMay be repeated for credit.
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 272:
Topics in Partial Differential Equations
Terms: Aut

Units: 3

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 298:
Graduate Practical Training
Only for mathematics graduate students. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. Students submit a concise report detailing work activities, problems worked on, and key results. May be repeated for credit up to 3 units. Prerequisite: qualified offer of employment and consent of department. Prior approval by Math Department is required; you must contact the Math Department's Student Services staff for instructions before being granted permission to enroll.
Terms: Aut, Win, Spr, Sum

Units: 1

Repeatable for credit

Grading: Satisfactory/No Credit
MATH 360:
Advanced Reading and Research
Terms: Aut, Win, Spr, Sum

Units: 110

Repeatable for credit

Grading: Letter or Credit/No Credit
Instructors: ;
Bump, D. (PI);
Candes, E. (PI);
Carlsson, G. (PI);
Chatterjee, S. (PI);
Chodosh, O. (PI);
Church, T. (PI);
Cohen, R. (PI);
Conrad, B. (PI);
Dembo, A. (PI);
Diaconis, P. (PI);
Eliashberg, Y. (PI);
Fox, J. (PI);
Galatius, S. (PI);
Ionel, E. (PI);
Kerckhoff, S. (PI);
Li, J. (PI);
Luk, J. (PI);
Malinnikova, E. (PI);
Manolescu, C. (PI);
Mazzeo, R. (PI);
Ohrt, C. (PI);
Papanicolaou, G. (PI);
Poulson, J. (PI);
Ryzhik, L. (PI);
Schoen, R. (PI);
Soundararajan, K. (PI);
Taylor, R. (PI);
Vakil, R. (PI);
Vasy, A. (PI);
Venkatesh, A. (PI);
Vondrak, J. (PI);
White, B. (PI);
Wright, A. (PI);
Ying, L. (PI)
MATH 391:
Seminar on Logic & Formal Philosophy (PHIL 391)
Research seminar for graduate students working in logic and formal philosophy. Presentations on contemporary topics by seminar participants and outside visitors. Maybe be repeated for credit.
Terms: Aut, Win

Units: 24

Repeatable for credit

Grading: Letter or Credit/No Credit
MATH 802:
TGR Dissertation
Terms: Aut, Win, Spr, Sum

Units: 0

Repeatable for credit

Grading: TGR
Instructors: ;
Bump, D. (PI);
Candes, E. (PI);
Carlsson, G. (PI);
Chatterjee, S. (PI);
Church, T. (PI);
Cohen, R. (PI);
Conrad, B. (PI);
Dembo, A. (PI);
Diaconis, P. (PI);
Eliashberg, Y. (PI);
Fox, J. (PI);
Galatius, S. (PI);
Ionel, E. (PI);
Kerckhoff, S. (PI);
Li, J. (PI);
Luk, J. (PI);
Manolescu, C. (PI);
Mazzeo, R. (PI);
Papanicolaou, G. (PI);
Rajaratnam, B. (PI);
Ryzhik, L. (PI);
Schoen, R. (PI);
Soundararajan, K. (PI);
Vakil, R. (PI);
Vasy, A. (PI);
Venkatesh, A. (PI);
Vondrak, J. (PI);
White, B. (PI);
Ying, L. (PI)