Print Settings
 

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 54N: The Space Mission to Europa

Jupiter's icy moon Europa is a leading candidate in the search for life in our solar system outside of Earth. NASA's upcoming Europa Clipper mission would investigate the habitability of the moon using a suite of nine geophysical instruments. In this course, we will use the mission as a central text around which to explore the intersection of science, engineering, management, economics, culture, and politics involved in any modern big science enterprise.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: ; Schroeder, D. (PI)

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Zebker, H. (PI)

GEOPHYS 70: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 110: Introduction to the foundations of contemporary geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 112: Exploring Geosciences with MATLAB

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 118X: Disasters, Decisions, Development in Sustainable Urban Systems (ESS 118, ESS 218, GEOPHYS 218X, GS 118, GS 218, POLISCI 224A, PUBLPOL 118)

CEE 224X of the CEE 224XYZ SUS Project series is joining forces with D3: Disasters, Decisions, Development to offer D3+SUS, which will connect principles of sustainable urban systems with the challenge of increasing resilience in the San Francisco Bay Area. The project-based learning course is designed to align with the Resilient By Design | Bay Area Challenge (http://www.resilientbayarea.org/); students will learn the basic concepts of resilience and tools of risk analysis while applying those mindsets and toolsets to a collective research product delivered to the RBD community. Students who take D3+SUS are encouraged to continue on to CEE 224Y and CEE 224Z, in which teams will be paired with local partners and will develop interventions to improve the resilience of local communities. For more information, visit http://sus.stanford.edu/courses.
Terms: Aut | Units: 3-5 | Grading: Letter (ABCD/NP)

GEOPHYS 118Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 218Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 118Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 218Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 122: Planetary Systems: Dynamics and Origins (GS 122, GS 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics. Students need instructor approval to take the course for 2 or 4 units.
Terms: Aut | Units: 2-4 | Grading: Letter or Credit/No Credit

GEOPHYS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, ESS 241)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit

GEOPHYS 162: Laboratory Methods in Geophysics (GEOPHYS 259)

Lab. Types of equipment used in experimental rock physics. Principles and measurements of geophysical properties such as porosity, permeability, acoustic wave velocity, and resistivity through lectures and laboratory experiments. Training in analytical project writing skills and understanding errors for assessing accuracy and variability of measured data. Students may investigate a scientific problem to support their own research. Prerequisites: Physics 45 (Light and Heat); and CME 100 (Vector Calculus).
Terms: not given this year | Units: 3-4 | Grading: Letter (ABCD/NP)

GEOPHYS 165: Ice Penetrating Radar (GEOPHYS 230)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

GEOPHYS 183: Reflection Seismology Interpretation (GEOPHYS 223, GS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 188: Basic Earth Imaging (GEOPHYS 210)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. n*The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3 | Grading: Letter or Credit/No Credit

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Grading: Letter or Credit/No Credit

GEOPHYS 198: Honors Program

Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: department approval. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 199: Senior Seminar: Issues in Earth Sciences (GS 150)

Focus is on written and oral communication in a topical context. Topics from current frontiers in earth science research and issues of concern to the public. Readings, oral presentations, written work, and peer review.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

GEOPHYS 201: Frontiers of Geophysical Research at Stanford: Faculty Lectures

Required for new students entering the department. Second-year and other graduate students may attend either for credit or as auditors. Department faculty and senior research staff introduce the frontiers of research problems and methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be. Offered every year, autumn quarter.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Zebker, H. (PI)

GEOPHYS 205: Effective Scientific Presentation and Public Speaking

The ability to present your work in a compelling, concise, and engaging manner will enhance your professional career. This course breaks down presentations into their key elements: the opening, body of the talk, closing, slide and poster graphics, Q&A, pacing, pauses, and voice modulation. The class is a series of several minute log stand-and-deliver exercises in which you get immediate class feedback and then re-do it on the fly. In addition, each participant will use their upcoming conference talk or poster (e.g., AGU, SEG), or upcoming job talk or funding pitch, as a final project. In addition to the class sessions, I will spend 60-90 min with each student individually. Everyone will come away a more skilled and confident speaker than they were before. Instructor: Ross S. Stein (Temblor.net, Emeritus USGS). The course syllabus can be found at http://temblor.net/team/ross-stein/
Terms: Aut | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: ; Stein, R. (PI)

GEOPHYS 210: Basic Earth Imaging (GEOPHYS 188)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. n*The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3 | Grading: Letter or Credit/No Credit

GEOPHYS 211: Environmental Soundings Image Estimation

Imaging principles exemplified by means of imaging geophysical data of various uncomplicated types (bathymetry, altimetry, velocity, reflectivity). Adjoints, back projection, conjugate-gradient inversion, preconditioning, multidimensional autoregression and spectral factorization, the helical coordinate, and object-based programming. Common recurring issues such as limited aperture, missing data, signal/noise segregation, and nonstationary spectra. See http://sep.stanford.edu/sep/prof/.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 217: Numerical Methods in Engineering and Applied Sciences (AA 214A, CME 207)

Scientific computing and numerical analysis for physical sciences and engineering. Advanced version of CME206 that, apart from CME206 material, includes nonlinear PDEs, multidimensional interpolation and integration and an extended discussion of stability for initial boundary value problems. Recommended for students who have some prior numerical analysis experience. Topics include: 1D and multi-D interpolation, numerical integration in 1D and multi-D including adaptive quadrature, numerical solutions of ordinary differential equations (ODEs) including stability, numerical solutions of 1D and multi-D linear and nonlinear partial differential equations (PDEs) including concepts of stability and accuracy. Prerequisites: linear algebra, introductory numerical analysis (CME 108 or equivalent).
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 218X: Disasters, Decisions, Development in Sustainable Urban Systems (ESS 118, ESS 218, GEOPHYS 118X, GS 118, GS 218, POLISCI 224A, PUBLPOL 118)

CEE 224X of the CEE 224XYZ SUS Project series is joining forces with D3: Disasters, Decisions, Development to offer D3+SUS, which will connect principles of sustainable urban systems with the challenge of increasing resilience in the San Francisco Bay Area. The project-based learning course is designed to align with the Resilient By Design | Bay Area Challenge (http://www.resilientbayarea.org/); students will learn the basic concepts of resilience and tools of risk analysis while applying those mindsets and toolsets to a collective research product delivered to the RBD community. Students who take D3+SUS are encouraged to continue on to CEE 224Y and CEE 224Z, in which teams will be paired with local partners and will develop interventions to improve the resilience of local communities. For more information, visit http://sus.stanford.edu/courses.
Terms: Aut | Units: 3-5 | Grading: Letter (ABCD/NP)

GEOPHYS 218Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 118Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 218Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 118Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 222: Reflection Seismology (GEOPHYS 182)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 223: Reflection Seismology Interpretation (GEOPHYS 183, GS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4 | Grading: Letter or Credit/No Credit

GEOPHYS 224: Seismic Reflection Processing

Workshop in computer processing of 2D and 3D seismic reflection data. Students individually process a seismic reflection profile (of their own choice or instructor-provided) from field recordings to migrated sections and subsurface images, using interactive software (OpenCPS from OpenGeophysical.com). Prerequisite: GEOPHYS 222 or consent of instructor.
Terms: not given this year | Units: 2-3 | Grading: Satisfactory/No Credit

GEOPHYS 225: Multiphase Instabilities and Extreme Events

How fast can ice sheets disintegrate? Why do volcanoes erupt? Which processes govern thenoccurrence of landslides? And can we reduce the destructive reach of tsunamis and storm surges?nThe common denominator of what at first glance might seem like disparate systems isnmultiphase flow. The dynamic interactions between multiple solid and fluid phases, such as icenand melt-water; lava and gas; vegetation and waves, give rise to drastic nonlinearities that governnabrupt change. This class explores the role of multiphase instabilities in the onset and evolutionnof extreme events. We will explore the different types of instabilities that arise in differentnmultiphase aggregates and why they might be critical for understanding the nonlinear behaviornof natural systems.
Terms: not given this year | Units: 4 | Grading: Letter (ABCD/NP)

GEOPHYS 230: Ice Penetrating Radar (GEOPHYS 165)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 235: Waves and Fields in Geophysics

Basic topics and approaches (theory and numerical simulations) on acoustic, electromagnetic, and elastic waves and fields for geophysical applications: dispersion, phase and group velocities, attenuation, reflection and transmission at planar interfaces, high frequency and low frequency approximations, heterogeneous media. Prerequisites: UG level class on waves or consent of instructor.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Harris, J. (PI); Li, D. (TA)

GEOPHYS 241A: Seismic Reservoir Characterization (ENERGY 141, ENERGY 241)

(Same as GP241) Practical methods for quantitative characterization and uncertainty assessment of subsurface reservoir models integrating well-log and seismic data. Multidisciplinary combination of rock-physics, seismic attributes, sedimentological information and spatial statistical modeling techniques. Student teams build reservoir models using limited well data and seismic attributes typically available in practice, comparing alternative approaches. Software provided (SGEMS, Petrel, Matlab). Offered every other year.nRecommended: ERE240/260, or GP222/223, or GP260/262 or GES253/257; ERE246, GP112
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

GEOPHYS 255: Report on Energy Industry Training

On-the-job-training for master's and doctoral degree students under the guidance of on-site supervisors. Students submit a report detailing work activities, problems, assignment, and key results. May be repeated for credit. Prerequisite: written consent of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 259: Laboratory Methods in Geophysics (GEOPHYS 162)

Lab. Types of equipment used in experimental rock physics. Principles and measurements of geophysical properties such as porosity, permeability, acoustic wave velocity, and resistivity through lectures and laboratory experiments. Training in analytical project writing skills and understanding errors for assessing accuracy and variability of measured data. Students may investigate a scientific problem to support their own research. Prerequisites: Physics 45 (Light and Heat); and CME 100 (Vector Calculus).
Terms: not given this year | Units: 3-4 | Grading: Letter (ABCD/NP)

GEOPHYS 262: Rock Physics

Properties of and processes in rocks as related to geophysical exploration, crustal studies, and tectonic processes. Emphasis is on wave velocities and attenuation, hydraulic permeability, and electrical resistivity in rocks. Application to in situ problems, using lab data and theoretical results.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

GEOPHYS 265: Imaging Radar and Applications (EE 355)

Radar remote sensing, radar image characteristics, viewing geometry, range coding, synthetic aperture processing, correlation, range migration, range/Doppler algorithms, wave domain algorithms, polar algorithm, polarimetric processing, interferometric measurements. Applications: surfafe deformation, polarimetry and target discrimination, topographic mapping surface displacements, velocities of ice fields. Prerequisites: EE261. Recommended: EE254, EE278, EE279.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 280: 3-D Seismic Imaging

The principles of imaging complex structures in the Earth subsurface using 3-D reflection seismology. Emphasis is on processing methodologies and algorithms, with examples of applications to field data. Topics: acquisition geometrics of land and marine 3-D seismic surveys, time vs. depth imaging, migration by Kirchhoff methods and by wave-equation methods, migration velocity analysis, velocity model building, imaging irregularly sampled and aliased data. Computational labs involve some programming. Lab for 3 units. Offered every year, Spring quarter.
Terms: Spr | Units: 2-3 | Grading: Letter or Credit/No Credit

GEOPHYS 288A: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Deformation, stress, and conservation laws. Dislocation models of strike slip and dip slip faults, in 2 and 3 dimensions. Crack models, including boundary element methods. Dislocations in layered and elastically heterogeneous earth models. Models of volcano deformation, including sills, dikes, and magma chambers. Offered every other year, autumn quarter.
Terms: Aut | Units: 3-5 | Grading: Letter or Credit/No Credit
Instructors: ; Segall, P. (PI); Wong, Y. (TA)

GEOPHYS 288B: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Viscoelasticity, post-seismic rebound, and viscoelastic magma chambers. Effects of surface topography and earth curvature on surface deformation. Gravity changes induced by deformation and elastogravitational coupling. Poro-elasticity, coupled fluid flow and deformation. Earthquake nucleation and rate-state friction. Models of earthquake cycle at plate boundaries.
Terms: Win | Units: 3-5 | Grading: Letter or Credit/No Credit

GEOPHYS 299: Teaching Experience in Geophysics

For TAs in Geophysics. Course and lecture design and preparation; lecturing practice in small groups. Classroom teaching practice in a Geophysics course for which the participant is the TA.
Terms: Spr | Units: 1 | Repeatable for credit | Grading: Credit/No Credit

GEOPHYS 306: Topics in Multiphase Instabilities and Extreme Events

This Seminar will explore the role of multiphase instabilities in the onset and evolution of extreme events. We will explore the different types of instabilities that arise in different multiphase aggregates and why they might be critical for understanding the nonlinear behavior of natural systems.
Terms: Spr | Units: 1 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 308: Topics in Disaster Resilience Research (CEE 308)

This seminar will explore past and current research on disaster risk and resilience, towards the development of new frontiers in resilience engineering science research. Designed for graduate students engaged in the topic of risk and resilience research, the seminar will be organized around weekly readings and discussion groups. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Baker, J. (PI); Soden, R. (PI)

GEOPHYS 385A: Reflection Seismology

Research in reflection seismology and petroleum prospecting. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 385B: Environmental Geophysics

Research on the use of geophysical methods for near-surface environmental problems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Knight, R. (PI)

GEOPHYS 385D: Theoretical Geophysics

Research on physics and mechanics of earthquakes, volcanoes, ice sheets, and nglaciers. Emphasis is on developing theoretical understanding of processes governing natural phenomena.
Terms: Aut, Win, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 385E: Tectonics

Research on the origin, major structures, and tectonic processes of the Earth's crust. Emphasis is on use of deep seismic reflection and refraction data. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385G: Radio Glaciology

Research on the acquisition, processing, and analysis of radio geophysical signals in observing the subsurface conditions and physical processes of ice sheets, glaciers, and icy moons.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 385K: Crustal Mechanics

Research in areas of petrophysics, seismology, in situ stress, and subjects related to characterization of the physical properties of rock in situ. May be repeated for credit.
Terms: not given this year | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 385L: Earthquake Seismology, Deformation, and Stress

Research on seismic source processes, crustal stress, and deformation associated with faulting and volcanism. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385N: Experimental Rock Physics

Research on the use of laboratory geophysical methods for the characterization of the physical properties of rocks and their response to earth stresses, temperature, and rock-fluid interactions. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Vanorio, T. (PI)

GEOPHYS 385R: Physical Volcanology

Research on volcanic processes. May be repeat for credit
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385S: Wave Physics

Theory, numerical simulation, and experiments on seismic and electromagnetic waves in complex porous media. Applications from Earth imaging and in situ characterization of Earth properties, including subsurface monitoring. Presentations by faculty, research staff, students, and visitors. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Harris, J. (PI)

GEOPHYS 385V: Poroelasticity

Research on the mechanical properties of porous rocks: dynamic problems of seismic velocity, dispersion, and attentuation; and quasi-static problems of faulting, fluid transport, crustal deformation, and loss of porosity. Participants define, investigate, and present an original problem of their own. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Mavko, G. (PI)

GEOPHYS 385W: GEOPHYSICAL MULTI-PHASE FLOWS

Research on the dynamics of multi-phase systems that are fundamental to many geophysical problems such as ice sheets and volcanoes.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 385Z: Radio Remote Sensing

Research applications, especially crustal deformation measurements. Recent instrumentation and system advancements. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
© Stanford University | Terms of Use | Copyright Complaints