Print Settings
 

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Segall, P. (PI)

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Beroza, G. (PI)

GEOPHYS 100: Directed Reading

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Grading: Letter (ABCD/NP)

GEOPHYS 101: Frontiers of Geophysical Research at Stanford (GEOPHYS 201)

Required for new students entering the department and undergraduate majors. Department faculty introduce the frontiers of research problems and methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be. Graduate students register for 1 unit (Mondays only), undergraduates for 3 units which include a discussion section (Mondays and Wednesdays). Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 104: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Knight, R. (PI)

GEOPHYS 110: Introduction to the Foundations of Contemporary Geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 112: Exploring Geosciences with MATLAB (ENERGY 112)

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 118X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, ESS 218X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-AQR, WAY-SI | Grading: Letter (ABCD/NP)

GEOPHYS 118Y: Shaping the Future of the Bay Area (CEE 118Y, CEE 218Y, ESS 118Y, ESS 218Y, GEOPHYS 218Y)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 118Z: Shaping the Future of the Bay Area (CEE 118Z, CEE 218Z, GEOPHYS 218Z)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 120: Ice, Water, Fire (GEOPHYS 220)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Terms: Win | Units: 3-5 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 122: Planetary Systems: Dynamics and Origins (GEOLSCI 122, GEOLSCI 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics. Students need instructor approval to take the course for 2 or 4 units.
Terms: Aut | Units: 2-4 | Grading: Letter or Credit/No Credit

GEOPHYS 128: MODELING EARTH (GEOPHYS 228)

Most problems in Earth Science are dazzling and beautifully complex. Abstracting from this natural complexity to identify the essential components and mechanisms of a natural system is perhaps the most important, but commonly overlooked, task for developing testable mathematical models for Earth and Environmental Science. This course focuses on conceptual model development, rather than addressing the variety of formal mathematical techniques available for the analytical analysis or numerical simulation of a model. Recommended Prerequisites: CME 100 or MATH 51 (or equivalent)
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, ESS 241)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: ; Arrigo, K. (PI)

GEOPHYS 162: Laboratory Characterization of Properties of Rocks and Geomaterials (CEE 192, GEOPHYS 259)

Lectures and laboratory experiments. Properties of rocks and geomaterials and how they relate to chemo-mechanical processes in crustal settings, reservoirs, and man-made materials. Focus is on properties such as porosity, permeability, acoustic wave velocity, and electrical resistivity. Students may investigate a scientific problem to support their own research (4 units). Prerequisites: Physics 41 (or equivalent) and CME 100.
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: ; Vanorio, T. (PI)

GEOPHYS 165: Ice Penetrating Radar (GEOPHYS 230)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Klemperer, S. (PI)

GEOPHYS 183: Reflection Seismology Interpretation (GEOLSCI 223, GEOPHYS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Win | Units: 1-4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 188: Basic Earth Imaging (GEOPHYS 210)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. *The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3 | Grading: Letter or Credit/No Credit
Instructors: ; Biondi, B. (PI)

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Grading: Letter or Credit/No Credit

GEOPHYS 198: Honors Program

Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: department approval. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 201: Frontiers of Geophysical Research at Stanford (GEOPHYS 101)

Required for new students entering the department and undergraduate majors. Department faculty introduce the frontiers of research problems and methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be. Graduate students register for 1 unit (Mondays only), undergraduates for 3 units which include a discussion section (Mondays and Wednesdays). Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 202: Reservoir Geomechanics

Basic principles of rock mechanics and the state of stress and pore pressure in sedimentary basins related to exploitation of hydrocarbon and geothermal reservoirs. Mechanisms of hydrocarbon migration, exploitation of fractured reservoirs, reservoir compaction and subsidence, hydraulic fracturing, utilization of directional and horizontal drilling to optimize well stability.Given alternate years.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Zoback, M. (PI)

GEOPHYS 205: Effective Scientific Presentation and Public Speaking (ESS 204, GEOLSCI 306)

The ability to present your work in a compelling, concise, and engaging manner will enhance your professional career. This course breaks down presentations into their key elements: the opening, body of the talk, closing, slide and poster graphics, Q&A, pacing, pauses, and voice modulation. The class is a series of several minute log stand-and-deliver exercises in which you get immediate class feedback and then re-do it on the fly. In addition, each participant will use their upcoming conference talk or poster (e.g., AGU, SEG), or upcoming job talk or funding pitch, as a final project. In addition to the class sessions, I will spend 60-90 min with each student individually. Everyone will come away a more skilled and confident speaker than they were before. Instructor: Ross S. Stein (Temblor.net, Emeritus USGS). The course syllabus can be found at http://temblor.net/team/ross-stein/
Terms: Aut | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: ; Stein, R. (PI)

GEOPHYS 208: Unconventional Reservoir Geomechanics

This course will investigate oil and gas production from extremely low permeability reservoirs. Lectures and exercises will address 1) the physical and fluid transport properties of unconventional reservoir formations, 2) stimulation techniques such as hydraulic fracturing and 3) understanding microseismicity associated with hydraulic stimulation and induced seismicity associated with wastewater injection. Prerequisite: GEOPHYS 202 or concurrent enrollment in GEOPHYS 202 is strongly recommended.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Zoback, M. (PI)

GEOPHYS 210: Basic Earth Imaging (GEOPHYS 188)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. *The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3 | Grading: Letter or Credit/No Credit
Instructors: ; Biondi, B. (PI)

GEOPHYS 211: Environmental Soundings Image Estimation

Imaging principles exemplified by means of imaging geophysical data of various uncomplicated types (bathymetry, altimetry, velocity, reflectivity). Adjoints, back projection, conjugate-gradient inversion, preconditioning, multidimensional autoregression and spectral factorization, the helical coordinate, and object-based programming. Common recurring issues such as limited aperture, missing data, signal/noise segregation, and nonstationary spectra. See http://sep.stanford.edu/sep/prof/.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Clapp, R. (PI)

GEOPHYS 218X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, ESS 218X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 118X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5 | Grading: Letter (ABCD/NP)

GEOPHYS 218Y: Shaping the Future of the Bay Area (CEE 118Y, CEE 218Y, ESS 118Y, ESS 218Y, GEOPHYS 118Y)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 218Z: Shaping the Future of the Bay Area (CEE 118Z, CEE 218Z, GEOPHYS 118Z)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 220: Ice, Water, Fire (GEOPHYS 120)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Terms: Win | Units: 3-5 | Grading: Letter or Credit/No Credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 222: Reflection Seismology (GEOPHYS 182)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Klemperer, S. (PI)

GEOPHYS 223: Reflection Seismology Interpretation (GEOLSCI 223, GEOPHYS 183)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Win | Units: 1-4 | Grading: Letter or Credit/No Credit

GEOPHYS 227: Global Seismology

Fundamentals of global-scale seismic wave propagation, including a review of the basic structure of the Earth; body waves in terms of ray-theory representation; surface waves as traveling waves and normal modes; free-oscillations of the Earth and ray-mode duality; normal mode summation, the spectral element method and synthetic seismograms; adjoint methods; seismic sources within the Earth and at the surface of the Earth (e.g. in the ocean). Problem sets include numerical simulations on the CEES cluster. Recommended prerequisite: GEOPHYS 130
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Gualtieri, L. (PI)

GEOPHYS 228: MODELING EARTH (GEOPHYS 128)

Most problems in Earth Science are dazzling and beautifully complex. Abstracting from this natural complexity to identify the essential components and mechanisms of a natural system is perhaps the most important, but commonly overlooked, task for developing testable mathematical models for Earth and Environmental Science. This course focuses on conceptual model development, rather than addressing the variety of formal mathematical techniques available for the analytical analysis or numerical simulation of a model. Recommended Prerequisites: CME 100 or MATH 51 (or equivalent)
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 230: Ice Penetrating Radar (GEOPHYS 165)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 237: Evolution of Terrestrial Planets

Despite forming in the inner solar system from broadly similar starting materials, Mercury, Venus, Earth, Mars, and the Moon each represent a unique outcome of the planetary formation process. Processes occurring deep inside planets drive the evolution of planetary crusts and atmospheres, which both control planetary habitability. This course explores how geophysical approaches such as gravity, topography, seismology, heat flow, and magnetism provide insight into the thermal and chemical histories of each rocky world. We cover how planetary scientists study ancient processes such as core formation, impact cratering, magnetic field generation, mantle convection, and tectonics by a combination of spacecraft measurements, modeling, and laboratory analyses of extraterrestrial materials. Recommended prerequisites: PHYSICS 41, 43, and MATH 51 or CME 100, or instructor consent.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Tikoo, S. (PI)

GEOPHYS 241A: Seismic Reservoir Characterization (ENERGY 141, ENERGY 241)

(Same as GP241) Practical methods for quantitative characterization and uncertainty assessment of subsurface reservoir models integrating well-log and seismic data. Multidisciplinary combination of rock-physics, seismic attributes, sedimentological information and spatial statistical modeling techniques. Student teams build reservoir models using limited well data and seismic attributes typically available in practice, comparing alternative approaches. Software provided (SGEMS, Petrel, Matlab). Offered every other year.nRecommended: ERE240/260, or GP222/223, or GP260/262 or GES253/257; ERE246, GP112
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

GEOPHYS 254: Sedimentology and Rock Physics of Carbonates (GEOLSCI 254)

Processes of precipitation and sedimentation of carbonate minerals as well as their post-depositional alteration with emphasis on marine systems. Topics include: geographic and bathymetric distribution of carbonates in modern and ancient oceans; genesis and environmental significance of carbonate grains and sedimentary textures; carbonate diagenesis; changes in styles of carbonate deposition through Earth history; reservoir quality and properties defined by storage capacity, flow (permeability) and connectivity of pores (effective porosity); the interplay between these properties, the original depositional characteristics of the carbonate sediments and post-depositional alteration; relationships between dissolution processes, cementation processes, and the resulting connectivity of the flow pathways. Lab exercises emphasize petrographic and rock physics analysis of carbonate rocks at scales ranging from map and outcrop to hand sample and thin section.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

GEOPHYS 255: Report on Energy Industry Training

On-the-job-training for master's and doctoral degree students under the guidance of on-site supervisors. Students submit a report detailing work activities, problems, assignment, and key results. May be repeated for credit. Prerequisite: written consent of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 259: Laboratory Characterization of Properties of Rocks and Geomaterials (CEE 192, GEOPHYS 162)

Lectures and laboratory experiments. Properties of rocks and geomaterials and how they relate to chemo-mechanical processes in crustal settings, reservoirs, and man-made materials. Focus is on properties such as porosity, permeability, acoustic wave velocity, and electrical resistivity. Students may investigate a scientific problem to support their own research (4 units). Prerequisites: Physics 41 (or equivalent) and CME 100.
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: ; Vanorio, T. (PI)

GEOPHYS 265: Imaging Radar and Applications (EE 355)

Radar remote sensing, radar image characteristics, viewing geometry, range coding, synthetic aperture processing, correlation, range migration, range/Doppler algorithms, wave domain algorithms, polar algorithm, polarimetric processing, interferometric measurements. Applications: surfafe deformation, polarimetry and target discrimination, topographic mapping surface displacements, velocities of ice fields. Prerequisites: EE261. Recommended: EE254, EE278, EE279.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Zebker, H. (PI)

GEOPHYS 280: 3-D Seismic Imaging

The principles of imaging complex structures in the Earth subsurface using 3-D reflection seismology. Emphasis is on processing methodologies and algorithms, with examples of applications to field data. Topics: acquisition geometrics of land and marine 3-D seismic surveys, time vs. depth imaging, migration by Kirchhoff methods and by wave-equation methods, migration velocity analysis, velocity model building, imaging irregularly sampled and aliased data. Computational labs involve some programming. Lab for 3 units. Offered every year, Spring quarter.
Terms: Spr | Units: 2-3 | Grading: Letter or Credit/No Credit
Instructors: ; Biondi, B. (PI)

GEOPHYS 288A: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Deformation, stress, and conservation laws. Dislocation models of strike slip and dip slip faults, in 2 and 3 dimensions. Crack models, including boundary element methods. Dislocations in layered and elastically heterogeneous earth models. Models of volcano deformation, including sills, dikes, and magma chambers. Offered every other year, autumn quarter.
Terms: Aut | Units: 3-5 | Grading: Letter or Credit/No Credit
Instructors: ; Segall, P. (PI)

GEOPHYS 288B: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Viscoelasticity, post-seismic rebound, and viscoelastic magma chambers. Effects of surface topography and earth curvature on surface deformation. Gravity changes induced by deformation and elastogravitational coupling. Poro-elasticity, coupled fluid flow and deformation. Earthquake nucleation and rate-state friction. Models of earthquake cycle at plate boundaries.
Terms: Win | Units: 3-5 | Grading: Letter or Credit/No Credit
Instructors: ; Segall, P. (PI)

GEOPHYS 385A: Reflection Seismology

Research in reflection seismology and petroleum prospecting. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 385B: Environmental Geophysics

Research on the use of geophysical methods for near-surface environmental problems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Knight, R. (PI)

GEOPHYS 385D: Theoretical Geophysics

Research on physics and mechanics of earthquakes, volcanoes, ice sheets, and nglaciers. Emphasis is on developing theoretical understanding of processes governing natural phenomena.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 385E: Tectonics

Research on the origin, major structures, and tectonic processes of the Earth's crust. Emphasis is on use of deep seismic reflection and refraction data. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385G: Radio Glaciology

Research on the acquisition, processing, and analysis of radio geophysical signals in observing the subsurface conditions and physical processes of ice sheets, glaciers, and icy moons.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 385K: Crustal Mechanics

Research in areas of petrophysics, seismology, in situ stress, and subjects related to characterization of the physical properties of rock in situ. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Zoback, M. (PI)

GEOPHYS 385L: Earthquake Seismology, Deformation, and Stress

Research on seismic source processes, crustal stress, and deformation associated with faulting and volcanism. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385N: Experimental Rock Physics

Research on the use of laboratory geophysical methods for the characterization of the physical properties of rocks and their response to earth stresses, temperature, and rock-fluid interactions. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Vanorio, T. (PI)

GEOPHYS 385Q: Seismology

Research on Source and Structural Seismology of the Earth. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 385R: Physical Volcanology

Research on volcanic processes. May be repeat for credit
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385S: Wave Physics

Theory, numerical simulation, and experiments on seismic and electromagnetic waves in complex porous media. Applications from Earth imaging and in situ characterization of Earth properties, including subsurface monitoring. Presentations by faculty, research staff, students, and visitors. May be repeated for credit.
Terms: not given this year | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385W: GEOPHYSICAL MULTI-PHASE FLOWS

Research on the dynamics of multi-phase systems that are fundamental to many geophysical problems such as ice sheets and volcanoes.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 385Z: Radio Remote Sensing

Research applications, especially crustal deformation measurements. Recent instrumentation and system advancements. May be repeated for credit.
Terms: Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 400: Research in Geophysics

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit | Grading: TGR
© Stanford University | Terms of Use | Copyright Complaints