Print Settings
 

ESS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

ESS 112: Human Society and Environmental Change (EARTHSYS 112, EARTHSYS 212, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1.
Terms: Aut | Units: 4 | UG Reqs: WAY-SI

ESS 118X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 218X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 118X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-AQR, WAY-SI

ESS 135: Community Leadership

Offered through Residential Education to residents of Castano House, Manzanita Park. Topics include: emotional intelligence, leadership styles, listening, facilitating meetings, group dynamics and motivation, finding purpose, fostering resilience. Students will lead discussions on personal development, relationships, risky behaviors, race, ethnicity, spirituality, integrity.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable 3 times (up to 6 units total)
Instructors: ; Jones, J. (PI)

ESS 148: Introduction to Physical Oceanography (CEE 162D, CEE 262D, EARTHSYS 164)

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci

ESS 164: Fundamentals of Geographic Information Science (GIS) (EARTHSYS 144)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. All students are required to attend a weekly lab session.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

ESS 204: Effective Scientific Presentation and Public Speaking (GEOLSCI 306, GEOPHYS 205)

The ability to present your work in a compelling, concise, and engaging manner will enhance your professional career. This course breaks down presentations into their key elements: the opening, body of the talk, closing, slide and poster graphics, Q&A, pacing, pauses, and voice modulation. The class is a series of several minute log stand-and-deliver exercises in which you get immediate class feedback and then re-do it on the fly. In addition, each participant will use their upcoming conference talk or poster (e.g., AGU, SEG), or upcoming job talk or funding pitch, as a final project. In addition to the class sessions, I will spend 60-90 min with each student individually. Everyone will come away a more skilled and confident speaker than they were before. Instructor: Ross S. Stein (Temblor.net, Emeritus USGS). The course syllabus can be found at http://temblor.net/team/ross-stein/
Terms: Aut | Units: 2
Instructors: ; Stein, R. (PI)

ESS 218X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 118X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5

ESS 220: Physical Hydrogeology (CEE 260A)

(Formerly GES 230.) Theory of underground water occurrence and flow, analysis of field data and aquifer tests, geologic groundwater environments, solution of field problems, and groundwater modeling. Introduction to groundwater contaminant transport and unsaturated flow. Lab. Prerequisite: elementary calculus.
Terms: Aut | Units: 4

ESS 227: Decision Science for Environmental Threats (EARTHSYS 227)

Decision science is the study of how people make decisions. It aims to describe these processes in ways that will help people make better or more well-informed decisions. It is an interdisciplinary field that draws upon psychology, economics, political science, and management, among other disciplines. It is being used in a number of domain areas and for a variety of applications, including managing freshwater resources, designing decision support tools to aid in coastal adaptation to sea-level rise, and creating `nudges¿ to enhance energy efficiency behaviors. This course covers behavioral theories of probabilistic inference, intuitive prediction, preference, and decision making. Topics include heuristics and biases, risk perceptions and attitudes, strategies for combining different sources of information and dealing with conflicting objectives, and the roles of group and emotional processes in decision making. This course will introduce students to foundational theories of decision science, and will involve applying these theories to understand decisions about environmental threats.
Terms: Aut | Units: 3-5

ESS 246A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, EARTHSYS 146A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Aut | Units: 3

ESS 280: Principles and Practices of Sustainable Agriculture (EARTHSYS 180)

Field-based training in ecologically sound agricultural practices at the Stanford Community Farm. Weekly lessons, field work, and group projects. Field trips to educational farms in the area. Topics include: soils, composting, irrigation techniques, IPM, basic plant anatomy and physiology, weeds, greenhouse management, and marketing. Application required. Deadline: September 10 for Autumn and March 10 for Spring. nnApplication: https://stanforduniversity.qualtrics.com/jfe/form/SV_244JnBoEP7zs8Dz
Terms: Aut, Spr | Units: 3-4 | Repeatable 3 times (up to 12 units total)

ESS 292: Directed Individual Study in Earth System Science

Under supervision of an Earth System Science faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable 10 times (up to 10 units total)

ESS 301: Topics in Earth System Science

Current topics, issues, and research related to interactions that link the oceans, atmosphere, land surfaces and freshwater systems. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

ESS 305: Climate Change: An Earth Systems Perspective

This is an introductory graduate-level course that is intended to provide an overview of leading-edge research topics in the area of climate change. Lectures introduce the physical, biogeochemical, ecological, and human dimensions of climate change, with emphasis on understanding climate change from an Earth System perspective (e.g., nonlinearities, feedbacks, thresholds, tipping points, resilience, vulnerability, risk). The emphasis is on providing an initial introduction to the process by which researchers pose questions and analyze and interpret results.
Terms: Aut | Units: 2

ESS 401: Curricular Practical Training

CPT course required for international students completing degree. Prerequisite: Earth System Science Ph.D. candidate.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 4 times (up to 12 units total)
Instructors: ; Rajaratnam, B. (PI)
© Stanford University | Terms of Use | Copyright Complaints