Print Settings
 

ENGR 14: Intro to Solid Mechanics

Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval. Pre-requisite: Physics 41.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

ENGR 15: Dynamics

The application of Newton's Laws to solve 2-D and 3-D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as MATH 41; and ENGR 14 (statics and strength) or a mechanics course in physics such as PHYSICS 41.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: ; Lew, A. (PI); Rock, S. (PI)

ENGR 21: Engineering of Systems

A high-level look at techniques for analyzing and designing complex, multidisciplinary engineering systems, such as aircraft, spacecraft, automobiles, power plants, cellphones, robots, biomedical devices, and many others. The need for multi-level design, modeling and simulation approaches, computation-based design, and hardware and software-in-the-loop simulations will be demonstrated through a variety of examples and case studies. Several aspects of system engineering will be applied to the design of large-scale interacting systems and contrasted with subsystems such as hydraulic systems, electrical systems, and brake systems. The use of design-thinking, story-boarding, mockups, sensitivity analysis, simulation, team-based design, and the development of presentation skills will be fostered through several realistic examples in several fields of engineering.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)

ENGR 25E: Energy: Chemical Transformations for Production, Storage, and Use (CHEMENG 25E)

An introduction and overview to the challenges and opportunities of energy supply and consumption. Emphasis on energy technologies where chemistry and engineering play key roles. Review of energy fundamentals along with historical energy perspectives and current energy production technologies. In depth analysises of solar thermal systems, biofuels, photovoltaics and electrochemical devices (batteries and fuel cells). Prerequisites: high school chemistry or equivalent.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ENGR 40A: Introductory Electronics

First portion of the former ENGR 40, for students not pursuing degree in Electrical Engineering. Instruction to be completed in the first seven weeks of the quarter. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Lab. Lab assignments. Enrollment limited to 300.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: ; Wong, S. (PI)

ENGR 40B: Introductory Electronics Part II

Second portion of the former ENGR 40. Instruction to be completed in the final three weeks of the quarter. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B. Students cannot enroll in ENGR 40B without enrolling in ENGR 40A. Students choose one the following sections (1) Frequency response of linear circuits, including basic filters, using phasor analysis. (2) Digital hardware and software implementations of a robot car. Lab. Lab assignments. Co-requisite: ENGR 40A. Enrollment limited to 300.
Terms: Win | Units: 2 | Grading: Letter (ABCD/NP)
Instructors: ; Wong, S. (PI)

ENGR 42: Introduction to Electromagnetics and Its Applications (EE 42)

Electricity and magnetism and its essential role in modern electrical engineering devices and systems, such as sensors, displays, DVD players, and optical communication systems. The topics that will be covered include electrostatics, magnetostatics, Maxwell's equations, one-dimensional wave equation, electromagnetic waves, transmission lines, and one-dimensional resonators. Pre-requisites: none.
Terms: Win | Units: 5 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Heilshorn, S. (PI)

ENGR 62X: Introduction to Optimization (Accelerated) (MS&E 111X, MS&E 211X)

Optimization theory and modeling. The role of prices, duality, optimality conditions, and algorithms in finding and recognizing solutions. Perspectives: problem formulation, analytical theory, computational methods, and recent applications in engineering, finance, and economics. Theories: finite dimensional derivatives, convexity, optimality, duality, and sensitivity. Methods: simplex and interior-point, gradient, Newton, and barrier. Prerequisite: CME 100 or MATH 51 or equivalent.
Terms: Aut, Win | Units: 3-4 | Grading: Letter or Credit/No Credit

ENGR 70A: Programming Methodology (CS 106A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. No prior programming experience required. Summer quarter enrollment is limited. Alternative versions of CS106A may be available which cover most of the same material but in different programming languages.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 70B: Programming Abstractions (CS 106B)

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent. Summer quarter enrollment is limited.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 70X: Programming Abstractions (Accelerated) (CS 106X)

Intensive version of 106B for students with a strong programming background interested in a rigorous treatment of the topics at an accelerated pace. Significant amount of additional advanced material and substantially more challenging projects. Some projects may relate to CS department research. Prerequisite: excellence in 106A or equivalent, or consent of instructor.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 90: Environmental Science and Technology (CEE 70)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Win, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: ; Kopperud, R. (PI)

ENGR 100: Teaching Public Speaking

The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Vassar, M. (PI)

ENGR 103: Public Speaking (ENGR 203)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Vassar, M. (PI)

ENGR 105: Feedback Control Design

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisite: EE 102B, CME 102 (Math 53) or ME 161.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ENGR 110: Perspectives in Assistive Technology (ENGR 110) (ENGR 210)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Field trips to local facilities, an assistive technology faire, and a film screening. Students from any discipline are welcome to enroll. 3 units for students (juniors, seniors, and graduate students preferred) who pursue a team-based assistive technology project with a community partner - enrollment limited to 24. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). Total enrollment limited to classroom capacity of 50. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Win | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: ; Jaffe, D. (PI)

ENGR 117: Expanding Engineering Limits: Culture, Diversity, and Equity (CSRE 117, CSRE 217, ENGR 217, FEMGEN 117, FEMGEN 217)

This course investigates how culture and diversity shape who becomes an engineer, what problems get solved, and the quality of designs, technology, and products. As a course community, we consider how cultural beliefs about race, ethnicity, gender, sexuality, abilities, socioeconomic status, and other intersectional aspects of identity interact with beliefs about engineering, influence diversity in the field, and affect equity in engineering education and practice. We also explore how engineering cultures and environments respond to and change with individual and institutional agency. The course involves weekly presentations by scholars and engineers, readings, short writing assignments, small-group discussion, and hands-on, student-driven projects. Students can enroll in the course for 1 unit (lectures only), 2 units (lectures+discussion), or 3 units (lectures+discussion+project). For 1 unit, students should sign up for Section 1 and Credit/No Credit grading, and for 2-3 units students should sign up for Section 2 and either the C/NC or Grade option. When the course is taken for 3 units and a grade, it meets the undergraduate WAYS-ED requirement and counts as a TiS course within the School of Engineering.
Terms: Win | Units: 1-3 | UG Reqs: WAY-ED | Grading: Letter or Credit/No Credit

ENGR 145: Technology Entrepreneurship

How does the entrepreneurship process enable the creation and growth of high-impact enterprises? Why does entrepreneurial leadership matter even in a large organization or a non-profit venture? What are the differences between just an idea and true opportunity? How do entrepreneurs form teams and gather the resources necessary to create a successful startup? Mentor-guided projects focus on analyzing students' ideas, case studies allow for examining the nuances of innovation, research examines the entrepreneurial process, and expert guests allow for networking with Silicon Valley's world-class entrepreneurs and venture capitalists. For undergraduates of all majors with interest in startups the leverage breakthrough information, energy, medical and consumer technologies. No prerequisites. Limited enrollment.
Terms: Aut, Win, Sum | Units: 4 | UG Reqs: GER:DB-SocSci | Grading: Letter (ABCD/NP)

ENGR 148: Principled Entrepreneurial Decisions (ENGR 248)

We examine how leaders tackle significant events that occur in high-growth entrepreneurial companies. Students will prepare their minds for the difficult entrepreneurial situations that they will encounter in their lives ¿ in whatever their chosen career. Cases and guest speakers will discuss not only the business rationale for the decisions taken but also how their principles affected those decisions. The teaching team will bring its wealth of experience in both entrepreneurship and VC investing to the class. Limited enrollment. Admission by application. Previous entrepreneurship coursework or experience preferred. Limited enrollment. Admission by application.
Terms: Win | Units: 3 | UG Reqs: WAY-ER | Grading: Letter or Credit/No Credit
Instructors: ; Fuchs, J. (PI)

ENGR 150: Data Challenge Lab

In this lab, students develop the practical skills of data science by solving a series of increasingly difficult, real problems. Skills developed include: data manipulation, data visualization, exploratory data analysis, and basic modeling. The data challenges each student undertakes are based upon their current skills. Students receive one-on-one coaching and see how expert practitioners solve the same challenges. Limited enrollment; application required. See http://datalab.stanford.edu for more information.
Terms: Win, Spr | Units: 3-5 | Grading: Letter (ABCD/NP)

ENGR 155A: Ordinary Differential Equations for Engineers (CME 102)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications: Solution of initial and boundary value problems, series solutions, Laplace transforms, and nonlinear equations; numerical methods for solving ordinary differential equations, accuracy of numerical methods, linear stability theory, finite differences. Introduction to MATLAB programming as a basic tool kit for computations. Problems from various engineering fields.Prerequisites: knowledge of single-variable calculus equivalent to the content of Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with Math 21, 5 on Calc AB with Math21). Placement diagnostic (recommendation non binding) at:(https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext). Recommended: CME100.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 155C: Introduction to Probability and Statistics for Engineers (CME 106)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100/ENGR154 or MATH 51 or 52.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: ; Khayms, V. (PI)

ENGR 199: Special Studies in Engineering

Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the section number corresponding to the particular faculty member. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENGR 199W: Writing of Original Research for Engineers

Technical writing in science and engineering. Students produce a substantial document describing their research, methods, and results. Prerequisite: completion of freshman writing requirements; prior or concurrent in 2 units of research in the major department; and consent of instructor. WIM for BioMedical Computation.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Grading: Letter or Credit/No Credit

ENGR 202C: Technical Communication for CEE SDC Students

Students learn how to write and present technical information clearly, with a focus on how to draft and revise reader-centered professional documents. The course includes elements of effective oral communication and presentation.This offering for CEE SDC students only.
Terms: Win, Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Dabiri, M. (PI)

ENGR 202S: Directed Writing Projects

Individualized writing instruction for students working on writing projects such as dissertations, proposals, grant applications, theses, journal articles, conference papers, and teaching and research statements. Weekly one-on-one conferences with writing instructors from the Technical Communication Program. Students receive close attention to and detailed feedback on their writing. No prerequisite. Grading: Satisfactory/No Credit. This course may be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; McDevitt, M. (PI)

ENGR 202W: Technical Communication

This course focuses on how to write clear, concise, and organized technical writing. Through interactive presentations, group workshops, and individual conferences, students learn best practices for communicating to academic and professional audiences for a range of purposes.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENGR 203: Public Speaking (ENGR 103)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Vassar, M. (PI)

ENGR 210: Perspectives in Assistive Technology (ENGR 110) (ENGR 110)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Field trips to local facilities, an assistive technology faire, and a film screening. Students from any discipline are welcome to enroll. 3 units for students (juniors, seniors, and graduate students preferred) who pursue a team-based assistive technology project with a community partner - enrollment limited to 24. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). Total enrollment limited to classroom capacity of 50. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Win | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: ; Jaffe, D. (PI)

ENGR 217: Expanding Engineering Limits: Culture, Diversity, and Equity (CSRE 117, CSRE 217, ENGR 117, FEMGEN 117, FEMGEN 217)

This course investigates how culture and diversity shape who becomes an engineer, what problems get solved, and the quality of designs, technology, and products. As a course community, we consider how cultural beliefs about race, ethnicity, gender, sexuality, abilities, socioeconomic status, and other intersectional aspects of identity interact with beliefs about engineering, influence diversity in the field, and affect equity in engineering education and practice. We also explore how engineering cultures and environments respond to and change with individual and institutional agency. The course involves weekly presentations by scholars and engineers, readings, short writing assignments, small-group discussion, and hands-on, student-driven projects. Students can enroll in the course for 1 unit (lectures only), 2 units (lectures+discussion), or 3 units (lectures+discussion+project). For 1 unit, students should sign up for Section 1 and Credit/No Credit grading, and for 2-3 units students should sign up for Section 2 and either the C/NC or Grade option. When the course is taken for 3 units and a grade, it meets the undergraduate WAYS-ED requirement and counts as a TiS course within the School of Engineering.
Terms: Win | Units: 1-3 | Grading: Letter or Credit/No Credit

ENGR 241: Advanced Micro and Nano Fabrication Laboratory

This project course focuses on developing processes for ExFab, a shared facility that supports flexible lithography, heterogeneous integration, and rapid micro prototyping. Team projects are approved by the instructor and are mentored by an ExFab staff member. Students will plan and execute experiments and document them in a final presentation and report, to be made available on the lab¿s Wiki for the benefit of the Stanford research community. This year¿s offering of ENGR241 will span two quarters: students interested in taking this course must sign up for both fall and winter courses, and will be researching a single project over that time. Students must consult with Prof. Fan or the SNF staff before signing up. For Autumn 18-19, the course will meet from 4:00pm-5:50pm in Allen 101X (note the start time).
Terms: Aut, Win | Units: 3 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Fan, J. (PI); Howe, R. (PI)

ENGR 245: The Lean LaunchPad: Getting Your Lean Startup Off the Ground

Apply the Lean Startup principles including the Business Model Canvas, Customer Development, and Agile Engineering to prototype, test, and iterate on your idea while discovering if you have a profitable business model. This is the class adopted by the National Science Foundation and National Institutes of Health as the Innovation Corps. Team applications required in December. Proposals can be software, hardware, or service of any kind. Projects are experiential and require incrementally building the product while talking to 10-15 customers/partners each week. See course website http://leanlaunchpad.stanford.edu/. Prerequisite: Interest in and passion for exploring whether your technology idea can become a real company. Limited enrollment.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)

ENGR 248: Principled Entrepreneurial Decisions (ENGR 148)

We examine how leaders tackle significant events that occur in high-growth entrepreneurial companies. Students will prepare their minds for the difficult entrepreneurial situations that they will encounter in their lives ¿ in whatever their chosen career. Cases and guest speakers will discuss not only the business rationale for the decisions taken but also how their principles affected those decisions. The teaching team will bring its wealth of experience in both entrepreneurship and VC investing to the class. Limited enrollment. Admission by application. Previous entrepreneurship coursework or experience preferred. Limited enrollment. Admission by application.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

ENGR 281: d.media - Designing Media that Matters

The combination of always-on smartphones, instant access to information and global social sharing is changing behavior and shifting cultural norms. How can we design digital experiences that make this change positive? Join the d.media team and find out! This course is project-based and hands-on. Three projects will explore visual design, interaction design and behavioral design all in the context of today's technology landscape and in service of a socially positive user experience. See http://dmedia.stanford.edu, Admission by application. See dschool.stanford.edu/classes for more information.
Terms: Win | Units: 2-3 | Grading: Letter or Credit/No Credit

ENGR 290: Graduate Environment of Support

For course assistants (CAs) and tutors in the School of Engineering tutorial and learning program. Interactive training for effective academic assistance. Pedagogy, developing course material, tutoring, and advising. Sources include video, readings, projects, and role playing.
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Lozano, N. (PI)

ENGR 298: Seminar in Fluid Mechanics

Interdepartmental. Problems in all branches of fluid mechanics, with talks by visitors, faculty, and students. Graduate students may register for 1 unit, without letter grade; a letter grade is given for talks. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

ENGR 299: Special Studies in Engineering

Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the corresponding section. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENGR 311A: Women's Perspectives

Master's and Ph.D. seminar series driven by student interests. Possible topics: time management, career choices, health and family, diversity, professional development, and personal values. Guest speakers from academia and industry, student presentations with an emphasis on group discussion. Graduate students share experiences and examine scientific research in these areas. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Sheppard, S. (PI)

ENGR 350: Data Impact Lab

In this lab, multi-disciplinary teams of students tackle high-impact, unsolved problems for social sector partners. Teams receive mentorship and coaching from Stanford faculty, domain experts, and data science experts from industry. Sample projects include innovations for: poverty alleviation in the developing world, local government services, education, and healthcare. Limited enrollment; application required. May be repeated for credit. See http://datalab.stanford.edu for more information.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Grading: Letter (ABCD/NP)
© Stanford University | Terms of Use | Copyright Complaints