Print Settings

APPPHYS 219: Solid State Physics Problems in Energy Technology

Technology issues for a secure energy future; role of solid state physics in energy technologies. Topics include the physics principles behind future technologies related to solar energy and solar cells, solid state lighting, superconductivity, solid state fuel cells and batteries, electrical energy storage, materials under extreme condition, nanomaterials.
Last offered: Spring 2017 | Units: 3

BIOE 355: Advanced Biochemical Engineering (CHEMENG 355)

Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism; recombinant DNA technology and synthetic biology (metabolic engineering). The production of protein pharaceuticals as a paradigm for the application of chemical engineering principles to advanced process development within the framework of current business and regulatory requirements. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41, or equivalent.
Terms: Spr | Units: 3

CEE 176A: Energy Efficient Buildings

Quantitative evaluation of technologies and techniques for reducing energy demand of residential-scale buildings. Heating and cooling load calculations, financial analysis, passive-solar design techniques, water heating systems, photovoltaic system sizing for net-zero-energy all-electric homes.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

CEE 176B: 100% Clean, Renewable Energy and Storage for Everything (CEE 276B)

This course discusses elements of a transition to 100% clean, renewable energy in the electricity, transportation, heating/cooling, and industrial sectors for towns, cities, states, countries, and companies. It examines wind, solar, geothermal, hydroelectric, tidal, and wave characteristics and resources; electricity, heat, cold and hydrogen storage; transmission and distribution; matching power demand with supply on the grid: efficiency; replacing fossil with electric appliances and machines in the buildings and industry; energy, health, and climate costs and savings; land requirements; feedbacks of renewables to the atmosphere; and 100% clean, renewable energy roadmaps to guide transitions.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: ; Jacobson, M. (PI)

CEE 207A: Understanding Energy (CEE 107A, EARTHSYS 103)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, homework assignments, virtual field trips, and a small-group discussion section once a week for 50 minutes (live participation is required, many different times will be offered). Lectures will be recorded and available on Canvas. No in-person field trips will be offered for AY 2020-2021 ¿ but alumni of the class can optionally attend field trips in future quarters. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Gragg. Open to all: pre-majors and majors, with any background! Website: CEE 107S/207S Understanding Energy: Essentials is a shorter (3 unit) version of this course, offered summer quarter. Students should not take both for credit. Prerequisites: Algebra.
Terms: Aut, Spr | Units: 3-5

CEE 207R: E^3: Extreme Energy Efficiency (CEE 107R)

Be part of a unique course about extreme energy efficiency and integrative design! We will meet remotely for once a week throughout the winter quarter. E^3 will focus on efficiency techniques' design, performance, choice, evolution, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. Solid technical grounding and acquaintance with basic economics and business concepts will both be helpful. The course will be composed of keynote lectures, exercises, and interactive puzzlers synthesizing integrative design principles. Students will be introduced to Factor 10 Engineering, the approach for optimizing the whole system for multiple benefits. Students will work closely and interactively with RMI staff including Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI), and Dr. Holmes Hummel, founder of Clean Energy Works. Exercises will illuminate challenges RMI has faced and solutions it has created in real-world design. Students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, often with expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. All backgrounds and disciplines, both undergraduate and graduate, are welcome to enroll. There is no application this year. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/ Earthsys 103, CEE 107S/ CEE 207S, CEE 176A, CEE 176B. Course details are available at the website:
Terms: Win | Units: 3

CEE 226: Life Cycle Assessment for Complex Systems

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as biobased products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: DfE. Student teams complete a life cycle assessment of a product or system chosen from industry.
Terms: Aut | Units: 3-4
Instructors: ; Lepech, M. (PI)

CEE 272R: Modern Power Systems Engineering

Focus is on Power Engineering from a systems point of view. Topics covered may include modeling of generation, transmission and distribution systems, load flow analysis, transient and steady-state stability analysis. Special emphasis given to modern market operations and dispatch, modeling intermittent controllable power sources, storage technologies, mechanisms for demand response, sensing the grid and the role of market mechanisms for deep integration. Course content may vary year to year.
Terms: Spr | Units: 3
Instructors: ; Rajagopal, R. (PI)

CEE 274A: Environmental Microbiology I (BIO 273A, CHEMENG 174, CHEMENG 274)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33,CHEM 121 (formerly CHEM 35), and BIOSCI 83, CHEMENG 181, or equivalents.
Terms: Aut | Units: 3

CEE 274B: Microbial Bioenergy Systems (BIO 273B, CHEMENG 456)

Introduction to microbial metabolic pathways and to the pathway logic with a special focus on microbial bioenergy systems. The first part of the course emphasizes the metabolic and biochemical principles of pathways, whereas the second part is more specifically directed toward using this knowledge to understand existing systems and to design innovative microbial bioenergy systems for biofuel, biorefinery, and environmental applications. There also is an emphasis on the implications of rerouting of energy and reducing equivalents for the fitness and ecology of the organism. Prerequisites: CHEMENG 174 or 181 and organic chemistry, or equivalents.
Last offered: Winter 2020 | Units: 3

CEE 276B: 100% Clean, Renewable Energy and Storage for Everything (CEE 176B)

This course discusses elements of a transition to 100% clean, renewable energy in the electricity, transportation, heating/cooling, and industrial sectors for towns, cities, states, countries, and companies. It examines wind, solar, geothermal, hydroelectric, tidal, and wave characteristics and resources; electricity, heat, cold and hydrogen storage; transmission and distribution; matching power demand with supply on the grid: efficiency; replacing fossil with electric appliances and machines in the buildings and industry; energy, health, and climate costs and savings; land requirements; feedbacks of renewables to the atmosphere; and 100% clean, renewable energy roadmaps to guide transitions.
Terms: Spr | Units: 3-4
Instructors: ; Jacobson, M. (PI)

CEE 277L: Smart Cities & Communities (CEE 177L)

A city is comprised of people and a complex system of systems connected by data. A nexus of forces ¿ IoT, open data, analytics, AI, and systems of engagement ¿ present new opportunities to increase the efficiency of urban systems, improve the efficacy of public services, and assure the resiliency of the community. Systems studied include: water, energy, transportation, buildings, food production, and social services. The roles of policy and behavior change as well as the risks of smart cities will be discussed. How cities are applying innovation to address the unprecedented challenges of COVID-19 will also be explored.
Last offered: Summer 2020 | Units: 3

CEE 330: Racial Equity in Energy (CEE 130R)

The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide and a heritage of environmental injustice. Drawing on current events, students will also explore contemporary strategies that center equity in the quest for rapid technology transitions in the energy sector to address climate change, public health, national security, and community resilience. Prerequisites:By permission of the instructor. Preferable to have completed Understanding Energy (CEE 107A/207A/EarthSys 103/CEE 107S/207S) or a similar course at another institution if a graduate student.
Terms: Aut | Units: 2-3

ECON 155: Environmental Economics and Policy

Economic sources of environmental problems and alternative policies for dealing with them (technology standards, emissions taxes, and marketable pollution permits). Evaluation of policies addressing local air pollution, global climate change, and the use of renewable resources. Connections between population growth, economic output, environmental quality, sustainable development, and human welfare. Prerequisite: ECON 50. May be taken concurrently with consent of the instructor.
Terms: Win, Sum | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SI

ENERGY 253: Carbon Capture and Sequestration (ENERGY 153)

CO2 separation from syngas and flue gas for gasification and combustion processes. Transportation of CO2 in pipelines and sequestration in deep underground geological formations. Pipeline specifications, monitoring, safety engineering, and costs for long distance transport of CO2. Comparison of options for geological sequestration in oil and gas reservoirs, deep unmineable coal beds, and saline aquifers. Life cycle analysis.
Terms: Aut | Units: 3-4

ENERGY 267: Engineering Valuation and Appraisal of Energy Assets and Projects (ENERGY 167)

Appraisal of development and remedial work on oil and gas wells; appraisal of producing properties; estimation of productive capacity, reserves; operating costs, depletion, and depreciation; value of future profits, taxation, fair market value; original or guided research problems on economic topics with report. Prerequisite: consent of instructor.
Last offered: Winter 2020 | Units: 3

ENERGY 269: Geothermal Reservoir Engineering

Conceptual models of heat and mass flows within geothermal reservoirs. The fundamentals of fluid/heat flow in porous media; convective/conductive regimes, dispersion of solutes, reactions in porous media, stability of fluid interfaces, liquid and vapor flows. Interpretation of geochemical, geological, and well data to determine reservoir properties/characteristics. Geothermal plants and the integrated geothermal system.
Last offered: Spring 2020 | Units: 3

ENERGY 293C: Energy from Wind and Water Currents

This course focuses on the extraction of energy from wind, waves and tides.The emphasis in the course is technical leading to a solid understanding of established extraction systems and discussion of promising new technologies. We will also cover resource planning and production optimization through observations and computer simulations.
Last offered: Spring 2020 | Units: 3

MATSCI 256: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions.
Terms: Spr | Units: 3-4
Instructors: ; Clemens, B. (PI)

MATSCI 302: Solar Cells

In the last 15 years, the solar power market has grown in size by 100 times while solar modules prices have fallen by 20 times. Unsubsidized, solar power projects now compete favorably against fossil fuels in many countries and is on track to be the largest energy provider in the future. How did this happen? nnIn MatSci 302 we will take a comprehensive look at solar cells starting from the underlying device physics that are relevant to all photovoltaic cell technologies. We will then look at the undisputed king (silicon based solar cells); how do they work today and how will they develop in the future. Finally, we will look at why past challengers have failed and how future challengers can succeed. This class will be co-taught by Brian and Craig, who graduated from the Material Science PhD program in 2011 and then started PLANT PV, a startup that developed a solar technology from idea to protoype and then full implementation on production lines in China. The lecturers routinely visit manufacturing facilities in Asia and work closely with engineering staff at the largest solar cell makers in the world to implement their technology into production lines.
Last offered: Autumn 2019 | Units: 3

MATSCI 303: Principles, Materials and Devices of Batteries

Thermodynamics and electrochemistry for batteries. Emphasis on lithium ion batteries, but also different types including lead acid, nickel metal hydride, metal air, sodium sulfur and redox flow. Battery electrode materials, electrolytes, separators, additives and electrode-electrolyte interface. Electrochemical techniques; advanced battery materials with nanotechnology; battery device structure. Prerequisites: undergraduate chemistry.
Terms: Aut | Units: 3
Instructors: ; Cui, Y. (PI); Wang, H. (TA)

MATSCI 316: Nanoscale Science, Engineering, and Technology

This course covers important aspects of nanotechnology in nanomaterials synthesis and fabrication, novel property at the nanoscale, tools and applications: a variety of nanostructures including nanocrystal, nanowire, carbon nanotube, graphene, nanoporous material, block copolymer, and self-assembled monolayer; nanofabrication techniques developed over the past 20 years; thermodynamic, electronic and optical property; applications in solar cells, batteries, biosensors and electronics. Other nanotechnology topics may be explored through a group project. SCPD offering.
Terms: Spr | Units: 3
Instructors: ; Cui, Y. (PI); Xu, J. (PI)

ME 182: Electric Transportation

Transportation accounts for nearly one-third of American energy use and greenhouse gas emissions and three-quarters of American oil consumption. It has crucial impacts on climate change, air pollution, resource depletion, and national security. Students wishing to address these issues reconsider how we move, finding sustainable transportation solutions. An introduction to the issue, covering the past and present of transportation and its impacts; examining alternative fuel proposals; and digging deeper into the most promising option: battery electric vehicles. Energy requirements of air, ground, and maritime transportation; design of electric motors, power control systems, drive trains, and batteries; and technologies for generating renewable energy. Students will also have a fun opportunity for a hands-on experience with an electric car. Prerequisites: Introduction to calculus and Physics AP or elementary mechanics.
Last offered: Autumn 2017 | Units: 3

ME 267: Ethics and Equity in Transportation Systems

Transportation is a crucial element of human life. It enables communication with others, provides access to employment / economic opportunity, and transports goods upon which we depend. However, transportation also generates negative impacts: pollution, noise, energy consumption and risk to human life. Because of its enormous capability to affect our lives, transportation is one of the most highly regulated businesses in the world. These regulations are designed to promote social welfare, improve access, and protect vulnerable populations. This course examines the origins and impacts of transportation policy and regulation: who benefits, who bears the cost, and how social and individual objectives are achieved.
Terms: Aut | Units: 3 | UG Reqs: WAY-ER
© Stanford University | Terms of Use | Copyright Complaints