Print Settings
 

EE 264: Digital Signal Processing

Digital signal processing (DSP) techniques and design of DSP applications. Topics include: discrete-time random signals; sampling and multi-rate systems; oversampling and quantization in A-to-D conversion; properties of LTI systems; quantization in fixed-point implementations of filters; digital filter design; discrete Fourier Transform and FFT; spectrum analysis using the DFT; parametric signal modeling and adaptive filtering. The course also covers applications of DSP in areas such as speech, audio and communication systems. The optional lab section (Section 02) provides a hands-on opportunity to explore the application of DSP theory to practical real-time applications in an embedded processing platform. See ee264.stanford.edu for more information. Register in Section 02 to take the lab. Undergraduate students taking the lab should register for 4 units to meet the EE design requirement. The optional lab section is not available to remote SCPD students. Prerequisites: EE 102A and EE 102B or equivalent, basic programming skills (Matlab and C++)
Terms: Win, Sum | Units: 3-4 | Grading: Letter or Credit/No Credit

EE 264W: Digital Signal Processing (WIM)

Writing in the Major (WIM) version of the 4-unit EE 264 theory + lab course. Digital signal processing (DSP) techniques and design of DSP applications. Topics include: discrete-time random signals; sampling and multi-rate systems; oversampling and quantization in A-to-D conversion; properties of LTI systems; quantization in fixed-point implementations of filters; digital filter design; discrete Fourier Transform and FFT; spectrum analysis using the DFT; parametric signal modeling and adaptive filtering. The course also covers applications of DSP in areas such as speech, audio and communication systems. The lab component provides a hands-on opportunity to explore the application of DSP theory to practical real-time applications in an embedded processing platform. See ee264.stanford.edu for more information. Prerequisites: EE 102A and EE 102B or equivalent, basic programming skills (Matlab and C++)
Terms: Win | Units: 5 | Grading: Letter or Credit/No Credit

EE 373A: Adaptive Signal Processing

Learning algorithms for adaptive digital filters. Self-optimization. Wiener filter theory. Quadratic performance functions, their eigenvectors and eigenvalues. Speed of convergence. Asymptotic performance versus convergence rate. Applications of adaptive filters to statistical prediction, process modeling, adaptive noise canceling, adaptive antenna arrays, adaptive inverse control, and equalization and echo canceling in modems. Artificial neural networks. Cognitive memory/human and machine. Natural and artificial synapses. Hebbian learning. The Hebbian-LMS algorithm. Theoretical and experimental research projects in adaptive filter theory, communications, audio systems, and neural networks. Biomedical research projects, supervised jointly by EE and Medical School faculty. Recommended: EE263, EE264, EE278.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Widrow, B. (PI)
© Stanford University | Terms of Use | Copyright Complaints