Print Settings
 

CS 261: Optimization and Algorithmic Paradigms

Algorithms for network optimization: max-flow, min-cost flow, matching, assignment, and min-cut problems. Introduction to linear programming. Use of LP duality for design and analysis of algorithms. Approximation algorithms for NP-complete problems such as Steiner Trees, Traveling Salesman, and scheduling problems. Randomized algorithms. Introduction to sub-linear algorithms and decision making under uncertainty. Prerequisite: 161 or equivalent.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
© Stanford University | Terms of Use | Copyright Complaints