Print Settings
 

CME 306: Numerical Solution of Partial Differential Equations (MATH 226)

Hyperbolic partial differential equations: stability, convergence and qualitative properties; nonlinear hyperbolic equations and systems; combined solution methods from elliptic, parabolic, and hyperbolic problems. Examples include: Burger's equation, Euler equations for compressible flow, Navier-Stokes equations for incompressible flow. Prerequisites: MATH 220A or CME 302.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Ying, L. (PI)

CME 328: Advanced Topics in Partial Differential Equations

Contents change each time and is taught as a topics course, most likely by a faculty member visiting from another institution. May be repeated for credit. Topic in 2012-13: numerical solution of time-dependent partial differential equations is a fundamental tool for modeling and prediction in many areas of science and engineering. In this course we explore the stability, accuracy, efficiency, and appropriateness of specialized temporal integration strategies for different classes of partial differential equations including stiff problems and fully implicit methods, operator splitting and semi-implicit methods, extrapolation methods, multirate time integration, multi-physics problems, symplectic integration, and temporal parallelism. Prerequisites: recommended CME303 and 306 or with instructor's consent.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit
© Stanford University | Terms of Use | Copyright Complaints