## Results for CME 195: Introduction to R |
2 courses |

This short course runs for four weeks beginning in the second week of the quarter and is offered in fall and spring. It is recommended for students who want to use R in statistics, science, or engineering courses and for students who want to learn the basics of R programming. The goal of the short course is to familiarize students with R's tools for scientific computing. Lectures will be interactive with a focus on learning by example, and assignments will be application-driven. No prior programming experience is needed. Topics covered include basic data structures, File I/O, graphs, control structures, etc, and some useful packages in R.

Terms: Aut, Spr
| Units: 1

Instructors: ; Nguyen, L. (PI); Sesia, M. (PI)

This course is about understanding "small data": these are datasets that allow interaction, visualization, exploration, and analysis on a local machine. The material provides an introduction to applied data analysis, with an emphasis on providing a conceptual framework for thinking about data from both statistical and machine learning perspectives. Topics will be drawn from the following list, depending on time constraints and class interest: approaches to data analysis: statistics (frequentist, Bayesian) and machine learning; binary classification; regression; bootstrapping; causal inference and experimental design; multiple hypothesis testing. Class lectures will be supplemented by data-driven problem sets and a project. Prerequisites: CME 100 or MATH 51; 120, 220 or STATS 116; experience with R at the level of CME/STATS 195 or equivalent.

Terms: Aut
| Units: 3