Print Settings
 

CHEMENG 10: The Chemical Engineering Profession

Open to all undergraduates. Overview of and careers in chemical engineering; opportunities to develop networks with working professionals. Panel discussions on career paths and post-graduation opportunities available. Areas include biotechnology, electronics, energy, environment, management consulting, nanotechnology, and graduate school in business, law, medicine, and engineering.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Frank, C. (PI)

CHEMENG 31N: When Chemistry Meets Engineering

Preference to freshmen. Chemistry and engineering are subjects that are ubiquitous around us. But what happens when the two meet? Students will explore this question by diving into experimental problems that scientists and engineers have to face on a daily basis. Many processes that are taken for granted have been developed by understanding science at a very fundamental level and then applying it to large and important industrial processes. In this seminar, students will explore some of the basic concepts that are important to address chemical engineering problems through experimental work. Students will build materials for energy and environmental applications, understand how to separate mixtures into pure compounds, produce fuels, and will learn to look at the chemical properties of molecules that are part of daily life with a different eye.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)

CHEMENG 60Q: Environmental Regulation and Policy

Preference to sophomores. How does government, politics and science affect environmental policy? We examine environmental policy including the precautionary principal, acceptable risks, mathematical models, and cost-effectiveness of regulation. You will learn how data is changing environmental regulation and how different administrations mold environmental policy in real-time. We examine the use of science and engineering, its media presentation and misrepresentation, and the effect of public scientific and technical literacy. You will learn how to participate in the process and effect change.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: ; Libicki, S. (PI)

CHEMENG 90Q: Dare to Care: Compassionate Design

Imagine yourself with your abundant creativity, intellect, and passion, but your ability to move or speak is diminished. How would you face the world, how would you thrive at Stanford, how would you relay to people your ideas and creations? How would you share yourself and your ideas with the world? nThere are more than 50 million individuals in America with at least one disability, and in the current world of design, these differences are often overlooked. How do we as designers empower people of diverse physical abilities and provide them with means of self-expression?nnIn Compassionate Design, students from any prospective major are invited to explore the engineering design process by examining the needs of persons with disabilities. Through invited guests, students will have the opportunity to directly engage people with different types of disabilities as a foundation to design products that address problems of motion and mobility, vision, speech and hearing. For example, in class, students will interview people who are deaf, blind, have cerebral palsy, or other disabling conditions. Students will then be asked, using the design tools they have been exposed to as part of the seminar, to create a particular component or device that enhances the quality of life for that user or users with similar limitations.nnPresentation skills are taught and emphasized as students will convey their designs to the class and instructors. Students will complete this seminar with a compassionate view toward design for the disabled, they will acquire a set of design tools that they can use to empower themselves and others in whatever direction they choose to go, and they will have increased confidence and abilities in presenting in front of an audience.
Terms: Aut | Units: 3 | UG Reqs: WAY-ED | Grading: Letter (ABCD/NP)
Instructors: ; Moalli, J. (PI)

CHEMENG 100: Chemical Process Modeling, Dynamics, and Control

Mathematical methods applied to engineering problems using chemical engineering examples. The development of mathematical models to describe chemical process dynamic behavior. Analytical and computer simulation techniques for the solution of ordinary differential equations. Dynamic behavior of linear first- and second-order systems. Introduction to process control. Dynamics and stability of controlled systems. Prerequisites: CHEMENG 20 or ENGR 20; CME 102 or MATH 53.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 174: Environmental Microbiology I (BIO 273A, CEE 274A, CHEMENG 274)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33,CHEM 121 (formerly CHEM 35), and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 181: Biochemistry I (CHEM 181, CHEMENG 281)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. Prerequisites: Chem 121 (formerly 35) and Chem 171.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Dassama, L. (PI)

CHEMENG 185A: Chemical Engineering Laboratory A

First quarter of two-quarter sequence. Experimental aspects of chemical engineering. Experimental research skills will be developed and practiced through guided lab modules. Emphasizes laboratory work, experimental design, and development of communication skills. In addition to lectures, students are required to attend one weekly lab section (5 hours each) where lab work will be conducted in student pairs. Students must enroll in a lab section on Axess. Final project will be a written research proposal prepared by student teams to be carried out in the following quarter in CHEMENG185B. Satisfies the Writing in the Major (WIM) requirement. Prerequisites: CHEMENG 120A, CHEMENG 120B, CHEMENG 181.
Terms: Aut | Units: 4 | Grading: Letter (ABCD/NP)

CHEMENG 190: Undergraduate Research in Chemical Engineering

Laboratory or theoretical work for undergraduates under the supervision of a faculty member. Research in one of the graduate research groups or other special projects in the undergraduate chemical engineering lab. Students should consult advisers for information on available projects. Course may be repeated.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Letter or Credit/No Credit

CHEMENG 190H: Undergraduate Honors Research in Chemical Engineering

For Chemical Engineering majors pursuing a B.S. with Honors degree who have submitted an approved research proposal to the department. Unofficial transcript must document BSH status and at least 9 units of 190H research for a minimum of 3 quarters May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter (ABCD/NP)

CHEMENG 191H: Undergraduate Honors Seminar

For Chemical Engineering majors approved for B.S. with Honors research program. Honors research proposal must be submitted and unofficial transcript document BSH status prior to required concurrent registration in 190H and 191H. May be repeated for credit. Corequisite: 190H
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Fuller, G. (PI)

CHEMENG 196: Creating and Leading New Ventures in Engineering and Science-based Industries (CHEM 196, CHEM 296, CHEMENG 296)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 274: Environmental Microbiology I (BIO 273A, CEE 274A, CHEMENG 174)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33,CHEM 121 (formerly CHEM 35), and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 281: Biochemistry I (CHEM 181, CHEMENG 181)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. Prerequisites: Chem 121 (formerly 35) and Chem 171.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit
Instructors: ; Dassama, L. (PI)

CHEMENG 296: Creating and Leading New Ventures in Engineering and Science-based Industries (CHEM 196, CHEM 296, CHEMENG 196)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 299: Graduate Practical Training

Only for graduate students majoring in Chemical Engineering. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. Students submit a concise report detailing work activities, problems worked on, and key results. May be repeated for credit up to 3 units. Prerequisite: qualified offer of employment and consent of department. Prior approval by the Chemical Engineering Department is required; you must contact the Chemical Engineering Department's Student Services staff for instructions before being granted permission to enroll.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEMENG 300: Applied Mathematics in the Chemical and Biological Sciences (CME 330)

Mathematical solution methods via applied problems including chemical reaction sequences, mass and heat transfer in chemical reactors, quantum mechanics, fluid mechanics of reacting systems, and chromatography. Topics include generalized vector space theory, linear operator theory with eigenvalue methods, phase plane methods, perturbation theory (regular and singular), solution of parabolic and elliptic partial differential equations, and transform methods (Laplace and Fourier). Prerequisites: CME 102/ENGR 155A and CME 104/ENGR 155B, or equivalents.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 340: Molecular Thermodynamics

Classical thermodynamics and quantum mechanics. Development of statistical thermodynamics to address the collective behavior of molecules. Establishment of theories for gas, liquid, and solid phases, including phase transitions and critical behavior. Applications include electrolytes, ion channels, surface adsorption, ligand binding to proteins, hydrogen bonding in water, hydrophobicity, polymers, and proteins.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 399: Graduate Research Rotation in Chemical Engineering

Introduction to graduate level laboratory and theoretical work. Performance in this course comprises part of the mandatory evaluation for pre-candidacy standing and suitability to continue in the chemical engineering Ph.D. program.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Letter (ABCD/NP)

CHEMENG 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOC 459, BIOE 459, CHEM 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

CHEMENG 460: Interfacial Engineering of Soft Matter

Interfacial engineering is a culmination of a century of interdisciplinary science and engineering. The foundation is provided by the thermodynamics of surface tension, surface chemistry and adsorption, which govern the properties of catalysts, colloids and surfactants. Microminiaturization of soft and hard materials and the growth of nanotechnology have led to dramatic increases in the surface-to-volume ratio. Knowledge of the principles of interfacial engineering can be used in the application domains of microelectronics chips and packaging, polymer composites, advanced ceramics, biomedical implants and bioanalytical devices. This course will cover the fundamentals of interface physics and chemistry, with an emphasis on soft matter, including phospholipids, proteins and synthetic polymers at interfaces. Specific topics will include intermolecular forces and potentials; solvation, structural and hydration forces; particle-particle interactions; interfacial thermodynamics; Poisson-Boltzmann theory of the diffuse electric double layer; electrokinetic phenomena; colloidal aggregation; and molecular assemblies.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Frank, C. (PI); Zhao, E. (TA)

CHEMENG 482: The Startup Garage: Design (SOMGEN 282)

(Same as STRAMGT 356) The Startup Garage is an experiential lab course that focuses on the design, testing and launch of a new venture. Multidisciplinary student teams work through an iterative process of understanding user needs, creating a point of view statement, ideating and prototyping new product and services and their business models, and communicating the user need, product, service and business models to end-users, partners, and investors. In the autumn quarter, teams will: identify and validate a compelling user need and develop very preliminary prototypes for a new product or service and business models. Students form teams, conduct field work and iterate on the combination of business model -- product -- market. Teams will present their first prototypes (business model - product - market) at the end of the quarter to a panel of entrepreneurs, venture capitalists, angel investors and faculty.
Terms: Aut | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

CHEMENG 500: Special Topics in Protein Biotechnology

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Swartz, J. (PI)

CHEMENG 501: Special Topics in Semiconductor Processing

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Bent, S. (PI)

CHEMENG 503: Special Topics in Biocatalysis

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Khosla, C. (PI)

CHEMENG 505: Special Topics in Microrheology

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Fuller, G. (PI)

CHEMENG 507: Special Topics in Polymer Physics and Molecular Assemblies

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Frank, C. (PI)

CHEMENG 510: Special Topics in Transport Mechanics

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Shaqfeh, E. (PI)

CHEMENG 513: Special Topics in Functional Organic Materials for Electronic and Optical Devices

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Bao, Z. (PI)

CHEMENG 514: Special Topics in Biopolymer Physics

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Spakowitz, A. (PI)

CHEMENG 515: Special Topics in Molecular and Systems Biology

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEMENG 516: Special Topics in Energy and Catalysis

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Jaramillo, T. (PI)

CHEMENG 517: Special Topics in Microbial Physiology and Metabolism

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Spormann, A. (PI)

CHEMENG 518: Special Topics in Advanced Biophysics and Protein Design

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Dunn, A. (PI)

CHEMENG 520: Special Topics in Biological Chemistry

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Sattely, E. (PI)

CHEMENG 521: Special Topics in Nanostructured Materials for Energy and the Environment

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Cargnello, M. (PI)

CHEMENG 522: Special Topics in Soft Matter and Molecular Physics

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Qin, J. (PI)

CHEMENG 523: Special Topics in Suspension Dynamics

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Zia, R. (PI)

CHEMENG 524: Special Topics in Electrochemistry and Water Treatment

Recent developments and current research. May be repeated for credit. Prerequisite: graduate standing and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Tarpeh, W. (PI)

CHEMENG 600: Graduate Research in Chemical Engineering

Laboratory and theoretical work leading to partial fulfillment of requirements for an advanced degree. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-12 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEMENG 699: Colloquium

Weekly lectures by experts from academia and industry in the field of chemical engineering. Course may be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Qin, J. (PI); Zia, R. (PI)
© Stanford University | Terms of Use | Copyright Complaints