## Results for APPPHYS |
13 courses |

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and special relativity. Interaction of electrons with intense electromagnetic fields from microwaves to x- ray, including electron accelerators, x-ray lasers and synchrotron light sources, attosecond laser-atom interactions, and x-ray matter interactions. Mechanisms of radiation, free-electron lasing, and advanced techniques for generating ultrashort brilliant pulses. Characterization of electronic properties of advanced materials, prospects for single-molecule structure determination using x-ray lasers, and imaging attosecond molecular dynamics.

Terms: Win
| Units: 4

Instructors: ; Marinelli, A. (PI); Shen, Z. (PI)

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics. Introduction to materials and topics of current interest. Topics include superconductivity, magnetism, charge and spin density waves, frustration, classical and quantum phase transitions, multiferroics, and interfaces. Prerequisite: elementary course in quantum mechanics.

Terms: Win
| Units: 4

Instructors: ; Fisher, I. (PI); Suzuki, Y. (PI)

Lecture/lab emphasizing analog and digital electronics for lab research. RC and diode circuits. Transistors. Feedback and operational amplifiers. Active filters and circuits. Pulsed circuits, voltage regulators, and power circuits. Precision circuits, low-noise measurement, and noise reduction techniques. Circuit simulation tools. Analog signal processing techniques and modulation/demodulation. Principles of synchronous detection and applications of lock-in amplifiers. Common laboratory measurements and techniques illustrated via topical applications. Prerequisites: undergraduate device and circuit exposure.

Terms: Win
| Units: 4

Instructors: ; Fox, J. (PI)

Provides a fundamental understanding of x-ray scattering and diffraction. Combines pedagogy with modern experimental methods for obtaining atomic-scale structural information on synchrotron and free-electon laser-based facilities. Topics include Fourier transforms, reciprocal space; scattering in the first Born approximation, comparison of x-ray, neutron and electron interactions with matter, kinematic theory of diffraction; dynamical theory of diffraction from perfect crystals, crystal optics, diffuse scattering from imperfect crystals, inelastic x-ray scattering in time and space, x-ray photon correlation spectroscopy. Laboratory experiments at the Stanford Synchrotron Radiation Lightsource.

Terms: Win
| Units: 4

Instructors: ; Hastings, J. (PI); Reis, D. (PI)

Review of the basics of quantum information. Quantum optics: photon counting, detection, and amplification. Quantum noise in parametric processes. Quantum sensing: standard quantum limits, squeezed light, and spin squeezing. Gaussian quantum information. Quantum theory of electric circuits, electromagnetic components, and nanomechanical devices. Integrated quantum systems: superconductivity and Josephson qubits, measurement-based quantum computing with photons, spin qubits, topological systems. Prerequisites: PHYSICS 134/234 and APPPHYS 203.

Terms: Win
| Units: 4

Instructors: ; Safavi-Naeini, A. (PI); Multani, K. (TA)

The genomics revolution has fueled a renewed push to model evolutionary processes in quantitative terms. This course will provide an introduction to quantitative evolutionary modeling through the lens of statistical physics. Topics will range from the foundations of theoretical population genetics to experimental evolution of laboratory microbes. Course work will involve a mixture of pencil-and-paper math, writing basic computer simulations, and downloading and manipulating DNA sequence data from published datasets. This course is intended for upper level physics and math students with no biology background, as well as biology students who are comfortable with differential equations and probability.

Terms: Win
| Units: 3

Instructors: ; Good, B. (PI)

Phenomenology of superconductivity viewed as a macroscopic quantum phenomenon. Topics include the superconducting pair wave function, London and Ginzburg-Landau theories, the Josephson effect, type I type II superconductivity, and the response of superconductors to currents, magnetic fields, and RF electromagnetic radiation. Introduction to thermal fluctuation effects in superconductors and quantum superconductivity.

Terms: Win
| Units: 3

Instructors: ; Kapitulnik, A. (PI)

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.

Terms: Aut, Win, Spr, Sum
| Units: 1-15
| Repeatable
for credit

Instructors: ; Allen, S. (PI); Baccus, S. (PI); Baer, T. (PI); Beasley, M. (PI); Bienenstock, A. (PI); Block, S. (PI); Boneh, D. (PI); Brongersma, M. (PI); Bucksbaum, P. (PI); Byer, R. (PI); Chu, S. (PI); Clemens, B. (PI); Das, R. (PI); Devereaux, T. (PI); Digonnet, M. (PI); Dionne, J. (PI); Doniach, S. (PI); Druckmann, S. (PI); Dunne, M. (PI); El Gamal, A. (PI); Fan, J. (PI); Fan, S. (PI); Fejer, M. (PI); Feldman, B. (PI); Fetter, A. (PI); Fisher, D. (PI); Fisher, I. (PI); Fordyce, P. (PI); Fox, J. (PI); Ganguli, S. (PI); Geballe, T. (PI); Glenzer, S. (PI); Goldhaber-Gordon, D. (PI); Good, B. (PI); Harris, J. (PI); Harrison, W. (PI); Heinz, T. (PI); Hesselink, L. (PI); Hogan, D. (PI); Hogan, J. (PI); Hollberg, L. (PI); Hong, G. (PI); Huang, Z. (PI); Hwang, H. (PI); Jackson, R. (PI); Jornada, F. (PI); Kachru, S. (PI); Kapitulnik, A. (PI); Kasevich, M. (PI); Kenny, T. (PI); Khemani, V. (PI); Khuri-Yakub, B. (PI); Kuo, C. (PI); Lee, Y. (PI); Lev, B. (PI); Levin, C. (PI); Lindenberg, A. (PI); Linderman, S. (PI); Lobell, D. (PI); Mabuchi, H. (PI); Mannix, A. (PI); Manoharan, H. (PI); Marinelli, A. (PI); Miller, D. (PI); Moerner, W. (PI); Moler, K. (PI); Nanni, E. (PI); Nilsson, A. (PI); Osheroff, D. (PI); Palanker, D. (PI); Pease, R. (PI); Petrosian, V. (PI); Prakash, M. (PI); Qi, X. (PI); Quake, S. (PI); Quate, C. (PI); Raubenheimer, T. (PI); Reed, E. (PI); Reis, D. (PI); Safavi-Naeini, A. (PI); Schnitzer, M. (PI); Shen, Z. (PI); Solgaard, O. (PI); Spakowitz, A. (PI); Stohr, J. (PI); Sturrock, P. (PI); Su, D. (PI); Suzuki, Y. (PI); Tantawi, S. (PI); Vuckovic, J. (PI); Wang, B. (PI); Winick, H. (PI); Yamamoto, Y. (PI); Zhang, S. (PI)

Opportunity for practical training in industrial labs. Arranged by student with research adviser's approval. Summary of activities required.

Terms: Aut, Win, Sum
| Units: 1-3
| Repeatable
for credit

Terms: Aut, Win, Spr, Sum
| Units: 1-15
| Repeatable
for credit

Instructors: ; Baer, T. (PI); Beasley, M. (PI); Bienenstock, A. (PI); Block, S. (PI); Brongersma, M. (PI); Bucksbaum, P. (PI); Byer, R. (PI); Chu, S. (PI); Clemens, B. (PI); Digonnet, M. (PI); Doniach, S. (PI); Druckmann, S. (PI); Dunne, M. (PI); El Gamal, A. (PI); Fan, S. (PI); Fejer, M. (PI); Fetter, A. (PI); Fisher, D. (PI); Fisher, I. (PI); Fox, J. (PI); Ganguli, S. (PI); Geballe, T. (PI); Goldhaber-Gordon, D. (PI); Good, B. (PI); Harris, J. (PI); Harrison, W. (PI); Heinz, T. (PI); Hesselink, L. (PI); Hwang, H. (PI); Kapitulnik, A. (PI); Kasevich, M. (PI); Kenny, T. (PI); Khuri-Yakub, B. (PI); Lee, Y. (PI); Lev, B. (PI); Mabuchi, H. (PI); Manoharan, H. (PI); Miller, D. (PI); Moerner, W. (PI); Moler, K. (PI); Nilsson, A. (PI); Osheroff, D. (PI); Palanker, D. (PI); Pease, R. (PI); Petrosian, V. (PI); Quate, C. (PI); Raubenheimer, T. (PI); Reis, D. (PI); Safavi-Naeini, A. (PI); Schnitzer, M. (PI); Shen, Z. (PI); Solgaard, O. (PI); Stohr, J. (PI); Sturrock, P. (PI); Suzuki, Y. (PI); Tantawi, S. (PI); Vuckovic, J. (PI); Winick, H. (PI); Yamamoto, Y. (PI); Zhang, S. (PI)

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.

Terms: Aut, Win, Spr
| Units: 1
| Repeatable
for credit

Current research topics in lasers, quantum electronics, optics, and photonics by faculty, students, and invited outside speakers. May be repeated for credit.

Terms: Aut, Win, Spr
| Units: 1
| Repeatable
for credit

Instructors: ; Fejer, M. (PI); Hesselink, L. (PI)

Terms: Aut, Win, Spr, Sum
| Units: 0
| Repeatable
for credit

Instructors: ; Baer, T. (PI); Beasley, M. (PI); Bienenstock, A. (PI); Block, S. (PI); Brongersma, M. (PI); Bucksbaum, P. (PI); Byer, R. (PI); Chu, S. (PI); Clemens, B. (PI); Dauskardt, R. (PI); Digonnet, M. (PI); Doniach, S. (PI); Dunne, M. (PI); El Gamal, A. (PI); Fan, J. (PI); Fan, S. (PI); Fejer, M. (PI); Fetter, A. (PI); Fisher, D. (PI); Fisher, I. (PI); Fox, J. (PI); Ganguli, S. (PI); Geballe, T. (PI); Goldhaber-Gordon, D. (PI); Good, B. (PI); Harris, J. (PI); Harrison, W. (PI); Hayden, P. (PI); Heinz, T. (PI); Hesselink, L. (PI); Huang, Z. (PI); Hwang, H. (PI); Kapitulnik, A. (PI); Kasevich, M. (PI); Kenny, T. (PI); Khuri-Yakub, B. (PI); Lee, Y. (PI); Lev, B. (PI); Mabuchi, H. (PI); Manoharan, H. (PI); Marinelli, A. (PI); Miller, D. (PI); Moerner, W. (PI); Moler, K. (PI); Nilsson, A. (PI); Osheroff, D. (PI); Palanker, D. (PI); Pease, R. (PI); Petrosian, V. (PI); Prakash, M. (PI); Quate, C. (PI); Raubenheimer, T. (PI); Reed, E. (PI); Reis, D. (PI); Safavi-Naeini, A. (PI); Schleier-Smith, M. (PI); Schnitzer, M. (PI); Shen, Z. (PI); Solgaard, O. (PI); Stohr, J. (PI); Sturrock, P. (PI); Suzuki, Y. (PI); Tantawi, S. (PI); Vuckovic, J. (PI); Winick, H. (PI); Yamamoto, Y. (PI); Zhang, S. (PI)