Print Settings
 

APPPHYS 77N: Functional Materials and Devices

Preference to freshmen. Exploration via case studies how functional materials have been developed and incorporated into modern devices. Particular emphasis is on magnetic and dielectric materials and devices. Recommended: high school physics course including electricity and magnetism.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Suzuki, Y. (PI)

APPPHYS 79N: Energy Options for the 21st Century

Preference to frosh. Choices for meeting the future energy needs of the U.S. and the world. Basic physics of energy sources, technologies that might be employed, and related public policy issues. Trade-offs and societal impacts of different energy sources. Policy options for making rational choices for a sustainable world energy economy.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Fox, J. (PI)

APPPHYS 203: Atoms, Fields and Photons

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and ordinary differential equations. Structure of single- and multi-electron atoms and molecules, and cold collisions. Phenomenology and quantitative modeling of atoms in strong fields, with modern applications. Introduction to quantum optical theory of atom-photon interactions, including quantum trajectory theory, mechanical effects of light on atoms, and fundamentals of laser spectroscopy and coherent control.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 273: Solid State Physics II

Introduction to the many-body aspects of crystalline solids. Second quantization of phonons, anharmonic effects, polaritons, and scattering theory. Second quantization of Fermi fields. Electrons in the Hartree-Fock and random phase approximation; electron screening and plasmons. Magnetic exchange interactions. Electron-phonon interaction in ionic/covalent semiconductors and metals; effective attractive electron-electron interactions, Cooper pairing, and BCS description of the superconducting state. Prerequisite: APPPHYS 272 or PHYSICS 172.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Hwang, H. (PI)

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 291: Practical Training

Opportunity for practical training in industrial labs. Arranged by student with research adviser's approval. Summary of activities required.
Terms: Aut, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Reed, E. (PI)

APPPHYS 294: Cellular Biophysics (BIO 294, BIOPHYS 294)

Physical biology of dynamical and mechanical processes in cells. Emphasis is on qualitative understanding of biological functions through quantitative analysis and simple mathematical models. Sensory transduction, signaling, adaptation, switches, molecular motors, actin and microtubules, motility, and circadian clocks. Prerequisites: differential equations and introductory statistical mechanics.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Fisher, D. (PI)

APPPHYS 392: Topics in Molecular Biophysics: Biophysics of Functional RNA (BIOPHYS 392) (BIOPHYS 392)

Survey of methods used to relate RNA sequences to the structure and function of transcribed RNA molecules. Computation of contributions of the counter-ion cloud to the dependence of free energy on conformation of the folded RNA. The relation of structure to function of ribozymes, riboswitches, and the formation of ribosomal proteins.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Doniach, S. (PI)

APPPHYS 470: Condensed Matter Seminar

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 483: Optics and Electronics Seminar

Current research topics in lasers, quantum electronics, optics, and photonics by faculty, students, and invited outside speakers. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Fejer, M. (PI)
© Stanford University | Terms of Use | Copyright Complaints